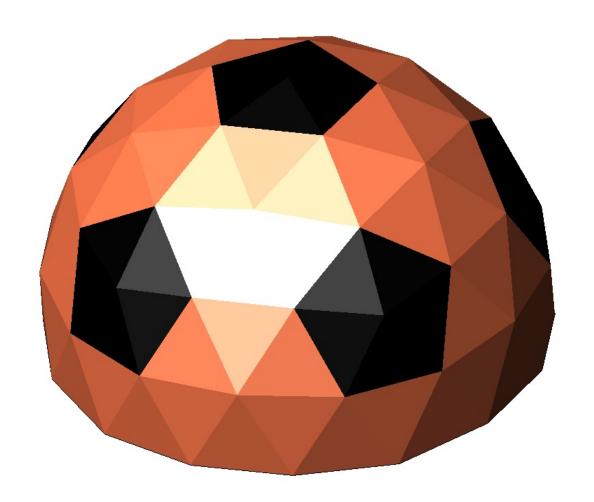
Author: Dirk Bertels

Hobart, November 12, 2004

Proportions in a Geodesic Dome

Calculations of the geodesic dome based on the icosahedron (frequency 3)



Index

INTRODUCTION	6
DEFINITIONS	7
STANDARDS USED IN THIS PAPER	9
VECTORS	
VECTORS VERTICES AND POINTS	
Example	
LINES	
THE ICOSAHEDRON	11
LENGTH OF THE ICOSAHEDRON EDGE.	13
LENGTH OF THE ICOSAHEDRON RADIUS	
APPROXIMATING THE SPHERE	14
Frequency	14
CONVERTING THE ICOSAHEDRON TO A GEODESIC DOME	
First step	14
Second step	
Second step	16
DETAILED CALCULATIONS OF THE GEODESIC DOME	17
STEP 1 - CALCULATING SECONDARY AND TERTIARY VERTEX COORDINATES AT	ND RADII ON
THE SURFACE OF AN ICOSAHEDRON	
Locate the new vertices onto the 3-dimensional grid (calculate the coordin	
STEP 2 - CALCULATING VERTICES ON THE GEODESIC DOME	
GEODESIC SPHERE COORDINATES FOR TRIANGLE AIJ	
LENGTH OF GEODESIC DOME EDGES	20
ANGULAR INFORMATION	21
LOCAL AXES	21
DIHEDRAL ANGLES	22
ANGLE_DI_BB1 ANGLE BETWEEN 2 'B' EDGES INSIDE A ICOSAHEDRON TRIAN	NGLE 22
ANGLE DI BB2 ANGLE BETWEEN 2 'B' EDGES JOINING 2 ICOSAHEDRON TRIA	
ANGLE_DI_CC ANGLE BETWEEN 2 MEETING C EDGES	
Interlude	
ANGLE_DI_AA ANGLE BETWEEN 2 MEETING A EDGES	27
SUMMARY	28
ILLUSTRATIONS	29
DESIGNING ANIMATION OBJECTS	30
APPLYING AN EVEN THICKNESS - BACKGROUND	31
THE 'RUSSIAN DOLL' METHOD	31
CENTERS OF A TRIANGLE	
1 Gravitational center	32

2.	Orthocenter	32
3.	Circumradius	32
4.	In-center	33
5.	Inner-radius system	33
APPLY	'ING AN EVEN THICKNESS	35
TRAN	ISLATING THE PLANE	35
	NG THE COORDINATES	
EXAN	IPLE TRIANGLE BLOCK	35
PLAN	E EQUATIONS - GENERAL	37
vec	ctor equation	37
sco	ılar equation	37
THE A	ACF PLANE	38
Ca	lculate the normal vector	38
Ad	ding unit normal to plane ACF to get projected plane coordinates	39
	TION FOR THE AR - CL - FL PLANE	
THE (CBE PLANE	41
Plc	ane equation for Bl	41
	BAD PLANE	
Plc	nne equation for Al	42
THE I	BCA PLANE	42
THE I	BCA PLANE	43
Th	e plane equation for point Ab	43
THE I	EDF PLANE	43
THE I	EDF PLANE	44
Th	e plane equation for point Dt	44
	E INTERSECTIONS	
Po	int 1: Intersection of planes Ar - Cl - Fl, Br - Al - Dl, and Bb - Cb - Ab	45
ILLUS	STRATIONS	46
CALC	CULATING THE RADIAL ANGLE BETWEEN 2 VERTICES - GENERAL EQUATION \dots	48
an	gle_A_Yaxis	48
an	gle_AIJ_Yaxis = 0.364864	49
an	gle_A_AIJ = 0.652358 radians	49
an	gle_A_DJI = 1.38209	49
an	$gle_A_DGJ = 1.75951 \ radians$	49
an	gle_A_CGD = 2.48923 radians	49
EDGE-	RADIAL ANGLES	50
SUPPL	EMENT 1 - CLASSIFICATION / NOMENCLATURE	51
EJ		51
	gesords[over edge]	
	gle[chord,edge]gle[chord,edge]	
	EMENT 2 - EQUATION CELLS	
	- NORMALISED VERTICES	
	- Icosahedron Primary Vertices	
	- Icosahedron Secondary Vertices (adjacent to a Primary Vertex)	
	- Icosahedron Tertiary Vertices (adjacent to Secondary Vertices)	
	MALISED VERTICES	
SP	- Spherical Primary Vertices (normalised)	5.3

SS - Spherical Secondary Vertices (normalised)	
ST - Spherical Tertiary Vertices (normalised)	53
SUPPLEMENT 3 - VERTEX TABLES	54
SUPPLEMENT 4 - CLASSIFICATION AND COMPARISON OF SECONDARY A TERTIARY VERTEX COORDINATES	
SUPPLEMENT 5 - USEFUL EQUATIONS	
-	
 Equation to measure a distance between 2 vertices in 3D. General equation to locate a point at a ratio of v/w of the length between two 	
vertices, starting from the first vertex	
4. Law of sines	
4. Length of chord spanning an arc of given length	
5. Angle between two points in 2D, given the chord length	
6. Height of a BCC triangle,	
7. Find center of any triangle	
8. Calculate the angle in radians between 2 vectors starting at the origin	
9. Calculate the inner circle coordinates of a triangle	
10. The dot product of 2 vectors	61
11. Cross product of 2 vectors (using determinant system)	61
SUPPLEMENT 6 - CALCULATIONS FOR AEI TRIANGLE	62
"Flat " Coordinates (on the surface of the icosahedron)	62
Normalised coordinates	
SUPPLEMENT 7 - CALCULATIONS FOR ABE TRIANGLE	64
"Flat " Coordinates	64
Normalised coordinates	
SUPPLEMENT 8 - CALCULATE ANGLES IN 3D	66
General	66
Procedure	
SUPPLEMENT 9 - SPHERICAL COORDINATES	67
SUPPLEMENT 9 - SPHERICAL COORDINATES	68
Standard representation of a point using spherical coordinates	
In the Y-r plane In the Z-X plane	68
Spherical to rectangular Rectangular to Spherical	68
SUPPLEMENT 10 - ILLUSTRATIONS	
PLATONIC SOLIDS	
THE ICOSAHEDRONTHE ACTUAL GEODESIC DOME, FREQUENCY 3, SIZE 5/8	
FULL GEODESIC DOME - FREQUENCY 3 - 'ROD' OR 'STICK' VIEW	
ANIMATION IMAGES	
BCC TRIANGLE FACE DIMENSIONS	74

BAA TRIANGLE FACE DIMENSIONS	75
GENERAL NOTES	76
NUMBER OF HEXAGONS, PENTAGONS, TRIANGLES NEEDED PER DOME	76
Sphere	76
5/8 dome	76

Introduction

This paper has co-evolved alongside a computer program I wrote to simulate the building of a dome using one building block, the triangular block. It aims to clarify the various mathematical concepts involved in building this type of geodesic dome, emphasising the various geometric proportions present within. Knowing these proportions will provide us with a solid foundation to the design of any form of dome construction, be it concrete (dome buildings), virtual (animation), or purely in the abstract for the theorists...

The word *dome* will be used throughout this text in its most general form, that is, it may be whatever part of the geodesic sphere, including the whole sphere. In terms of this program, the whole sphere as well as part of the sphere is produced in very much the same way...

Whereas in an actual (physical) dome building some deviation from the ideal measurements is acceptable, animation requires theoretical precision and versatility. For example, it should be possible to change dimensions easily (such as changing the thickness of the building block walls).

Quite a lot of information could be found on the web regarding measurements of the geodesic dome, but I was more interested in the equations these measurements were derived from, for exactly the reason given above: it gives you the versatility to change dimensions. Additionally, seeing the equations helps the understanding of the geometry involved and also gives you some insight into the beauty of geometry. Don't be intimidated by the size of some of the equations, if you follow the logic it will soon become apparent that the calculations involved are actually quite simple.

As stated before, the animation simulates the construction of a dome, starting with one building block. Although animation involves programming, no programming language is used in this paper, only the mathematical description on which the procedures are based. Moreover, the description is elementary, using basic trigonometry and 3D geometry, and thus easy to follow for any form of application... In fact the procedural logic used in programming may help the understanding of the subject for programmers and non-programmers alike.¹

The methods used in the program are mentioned nevertheless to use as reference to the program, which, after all, is the reason this text came about.

To gain a good grasp on the topic it will be necessary to picture the icosahedron and the geodesic sphere (or dome) in 3D. Much has been written about this, and a general search will greatly benefit the understanding of these 3D objects. This being said, a lot of effort has been spent on clarification and supplementing information, even on a basic level.

¹ My particular animation project is written in C++ and uses the OpenGI libraries.

Definitions

Interestingly, a sphere is a mathematical object that contains the maximum volume compared to its surface area, so if a structure of large volume is to be constructed for minimum cost, it makes sense to look at structures whose shape approaches a sphere².

The word *geodesic* is derived from the Latin for *earth dividing*. More specifically, *geodesic* is another word for *great circle*. A *great circle* is the largest circle that can be drawn around a sphere, like the lines of latitude. The shortest path between 2 points on the surface of a sphere always runs along a geodesic.

The Wolfram (writer of the infamous program Mathematica) web page defines the *geodesic dome* as a

triangulation of a Platonic solid or other polyhedron to produce a close approximation to a sphere or hemisphere³.

He refers to the process of creating a geodesic dome as *geodesation*.

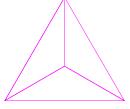
To clarify some terms in Wolfram's definition above, a *polyhedron* is a *many-faced* object, and a *Platonic solid* is a *special wet of polyhedron whose faces are congruent regular polygons (many-sided figures) with the same number of faces meeting at every vertex⁴. <i>Triangulation* is the process of dividing a face into triangles.

Obviously we can choose to divide each face into as many triangles as we want. We will refer to the degree of triangulation as *frequency*.

Only 5 Platonic solids exist, that is, only 5 shapes can be constructed using the requirements mentioned in the definition. We will base our mathematical design of the geodesic dome on one of these Platonic solids, the *icosahedron*. We will describe this object soon. In the chapter *Creating the geodesic dome* we will start the process of triangulation.

Another Platonic solid we will work with is a triangular pyramid: the *tetrahedron*. This will be the building block we use to construct the geodesic dome (which itself is a geodesation of the icosahedron).

Actually, the tetrahedron is only a Platonic solid if it is a *regular tetrahedron*, that is, if it is entirely made up of *equilateral* triangles.



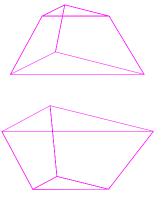
² 'Geodesic Domes' September 15, 2004 Tom Davis http://www.geometer.org/mathcircles.

³ http://mathworld.wolfram.com/GeodesicDome.html

⁴ http://whistleralley.com/polyhedra/platonic.htm. See also the illustration section in this article.

The tetrahedrons we use are not equilateral, therefore when we talk about a tetrahedron you can assume an *irregular tetrahedron*.

A *truncated tetrahedron* is a tetrahedron with its top cut off. This is the actual object we will work with. Although in practice, this object occurs in our dome in any position, we will discuss it assuming it is in the upside down position, the *Inversed truncated tetrahedron*. To keep reading comfortable we will refer to this 'inversed truncated irregular tetrahedron' as *triangle block*.



Note that various types of domes exist (more about that later). It pays to visit some web sites to get a general idea of the wide variety that exists, as well as the different applications that domes are used for: from solid constructions for nuclear power stations and astronomy observatories to climbing frames for children.

Standards used in this paper

Vectors

I like to use the standard used in many mathematics text books⁵. This simply prints the vectors in bold. Unless otherwise stated, all vectors are assumed having their origin at the world origin. Therefore,

$$A = 0 A$$

Note how we use the underscore to *relate* two variables to each other. Vectors are used to indicate both magnitude and direction. While in engineering and other sciences this characteristic is greatly exploited to describe physical phenomena, for our purposes we mainly use vectors to indicate and calculate position.

So it could be argued, why bother, just use the point (coordinate) notation. So we could, but if we consider the coordinates of a point *in relation to the world origin* we have more information, such as location, direction, distance from origin. This allows us to do more calculations. And vectors are the means to do these calculations.

It is worthwhile to study vectors and matrices since they are a fundamental concept in the field of graphics and animation. [link to supplement primer on vectors]

Vertices and points

We can use the vector (matrix) notation to indicate a vertex. The real interpretation of this is the vector from the world origin to the point.

$$\mathbf{U} = \begin{bmatrix} x_coordinate \\ y_coordinate \\ z_coordinate \end{bmatrix}$$

The letter **U** (from 'universal') will be used to indicate a general group of vertices. So if we see something like **Ut** in an equation, and we know there are 3 't' vertices (**AIJt**, **IJ1t**, and **IJ2t**) then this equation holds true for those 3 vertices.

However, in calculating vertices, it is often necessary to apply equations to each of the coordinates of a point. In this regard, vertices are looked upon as points with a set of coordinates. So in equations where vector coordinates are calculated we use

$$U_{[i]}$$

where i is the index representing x, y, and z in turn. Each time we need to define a point in 3D space we need to calculate the x, y, and z coordinates of this point.

⁵ e.g. 'Calculus' by James Stewart ISBN0-534-35949-3

Example

Assuming there are 3 types of 't' vertices; AIJt, IJ1t, and IJ2t, then the equation

$$Ut_{[i]} = U_{[i]} * (1 - length_factor)$$

is the general equation for

$$AIJt_{[x]} = AIJ_{[x]} * (1 - length _ factor)$$

$$AIJt_{[y]} = AIJ_{[y]} * (1 - length _ factor)$$

$$AIJt_{[z]} = AIJ_{[z]} * (1 - length _ factor)$$

$$IJ1t_{[x]} = IJ1_{[x]} * (1-length_factor)$$

$$IJ1t_{y} = IJ1_{y} * (1 - length _ factor)$$

$$IJ1t_{[z]} = IJ1_{[z]} * (1-length_factor)$$

$$IJ2t_{[x]} = IJ2_{[x]}*(1-length_factor)$$

$$IJ2t_{[y]} = IJ2_{[y]}*(1-length_factor)$$

$$IJ2t_{[z]} = IJ2_{[z]}*(1-length_factor)$$

And so it comes to pass that we often represent the vertices in point notation while we treat them as vectors in the calculations. Never mind ...

Lines

To indicate a line from one vertex to another, we use ...

$$A_B$$

Where A and B are vertices.

We will use the same notation to indicate a vector from point A to B.

To indicate the length of a line, use the absolute notation

$$|A _ B|$$

The Icosahedron

The icosahedron consists entirely of equilateral triangles (triangles whose 3 sides are equal in length). The icosahedron has 12 vertices, 20 faces, and 30 edges and is based on the Golden Proportion 'PHI' (also written as '\phi') which indicates 5-fold symmetry. 6

$$\phi = \frac{1 + \sqrt{5}}{2} = 1.61803398875... = GOD$$

PHI (like PI and e) is irrational, because it can't be expressed in the form of a ratio. In fact, PHI is the most irrational of all numbers, approaching its limit slower than any other irrational number.

Interestingly, the icosahedron is nature's preferred shape for viral forms, including herpes, chicken-pox, human wart, canine infectious hepatitis, turnip yellow mosaic, adenovirus, and others⁷. In a way this makes sense, because a minimum amount of information is needed to achieve a very stable shape, and nature has been known to use the path of least energy to bring equilibrium into a system...

All vertices are positioned on an imaginary sphere encompassing the icosahedron. This means that the radius from the center to every vertex is the same.

Following list shows the 3 dimensional coordinates for the icosahedron⁸. The presence of PHI in all coordinates removes any doubt as to the 5-fold symmetry of the icosahedron. Also note the minimum of information needed, only 3 numbers are interacting, their only freedom being position and signature (polarity).

vertex	X	у	Z
Α	0	1	ф
В	0	-1	ф
С	0	-1	-ф
D	0	1	-ф
Е	ф	0	1
F	-ф	0	1
G	-ф	0	-1
Н	ф	0	-1
1	1	ф	0
J	-1	ф	0
K	-1	-ф	0
L	1	-ф	0

naming convention

The icosahedron vertices are PRIMARY vertices and coloured red.

⁶ See illustration section on the icosahedron to see the 5-fold (pentagon) symmetry

⁷ "Nature's Numbers" by Ian Stewart - ISBN: 1 85799 648 8

⁸ The order of these vertex coordinates and following edges and faces can be arbitrarily chosen. I used the order suggested by Tom Davis at http://www.geometer.org/mathcircles. His PDF file "geodesic.pdf" has also been instrumental to this article.

The 20 triangles connecting the vertices above to make up the faces of the icosahedron are drawn counter-clockwise (CCW) which is the norm for graphic implementations such as OpenGL.

The highlighted triangles are adjoining ones and are covered in this paper.

AIJ	AJF	AFB	ABE	<mark>AEI</mark>
BFK	BKL	BLE	CDH	CHL
CLK	CKG	CGD	DGJ	DJI
DIH	ELH	EHI	FJG	FGK

The 30 edges of those triangles are

AB	AE	AF	Al	AJ	BE	BF	BK	BL	CD
CG	CH	CK	CL	DG	DH	DI	DJ	EH	EI
EL	FG	FJ	FK	GJ	GK	HI	HL	IJ	KL

Length of the Icosahedron Edge

The length of these edges is calculated using the standard 3D Distance Equation

$$|AB| = \sqrt{(B_{[x]} - A_{[x]})^2 + (B_{[y]} - A_{[y]})^2 + (B_{[z]} - A_{[z]})^2}$$

Substituting the corresponding values from the vertex table into this equation gives the length between vertices A and B:

$$|AB| = \sqrt{(0-0)^2 + (1+1)^2 + (\phi - \phi)^2} = 2$$

This value '2' for length |AB| holds true for ALL 30 edges.

Length of the Icosahedron radius

The length of the radius from ANY vertex to the origin 9 is ...

$$|C^{re} A| = \sqrt{(0-0)^2 + (0-1)^2 + (0-\phi)^2} = \sqrt{1+\phi^2} = \sqrt{2+\phi}$$

Out of interest, this amounts to

$$\sqrt{\frac{5+\sqrt{5}}{2}}$$

Again, this value holds true for all vertex-origins in the Icosahedron.

Page 13 of 76

⁹ The origin is the center of the geodesic sphere.

Creating the geodesic dome

Approximating the sphere

As mentioned above, there are many types of geodesic domes. They may be based on other polyhedrons, or even a combination of polyhedrons. And any of these can exist in different frequencies (see below). In addition, they may be of different sizes (whole sphere, half sphere, 5/8 of a sphere, etc).

The geodesic sphere, based on the icosahedron is actually commonly used in graphics applications to approximate a sphere because of the minimum amount of information that is needed to create the polygons necessary.¹⁰ However, these applications use frequencies that are powers of two...

Frequency

The term frequency has been mentioned several times now. It relates to the subdivision of the polyhedron's edges in such a way that a number of triangular faces are created (remember that a geodesic dome is a triangulation of a polyhedron, that is, the polyhedron gets subdivided into triangles). The newly created vertices are then pushed upwards against an imaginary sphere encompassing this polygon. This way the sphere is approximated at a higher resolution, since more (smaller) faces are describing the sphere.

This paper discusses the sphere (dome) created by subdividing the edges of the icosahedron by 3 (hence, frequency 3). The graphics application mentioned above recursively divides the sides by two (which is easier to implement), thereby approximating a sphere closer and closer to a higher resolution as the frequency exponentially grows...

In order to convert the icosahedron to a dome, two steps are taken¹¹...

Converting the icosahedron to a geodesic dome

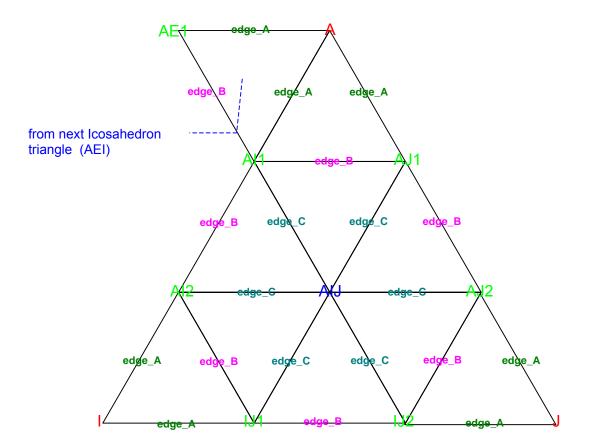
First step

Divide all 30 edges of the icosahedron by 3. Following that, the newly derived vertices are connected in such a way that each icosahedron triangle consists of 9 sub-triangles (see diagram below and figure in the illustration section). For now, though differently named, all edges have the same length.

One icosahedron triangle is chosen for our calculations. Remember that we are after proportions, therefore the proportions in this one triangle will be reflected in the other 11 triangles of the icosahedron.

¹⁰ See the "redbook", a free standard openGL tutorial on the web, 2nd chapter.

¹¹ Another method that converts the icosahedron to a geodesic dome truncates (cuts the tips off) the icosahedron first and consequently triangulates the faces with a frequency of 1.



naming convention

Vertices

- Primary vertices are coloured red, they are the original icosahedron vertices.
- Secondary vertices are adjacent to a primary vertex and coloured light green.

Secondary vertices and coloured blue.

Edges

- Letters P, S, and T stand for Primary, Secondary, and Tertiary respectively.
- This naming convention describes what type of vertices are joined by the edge.
- The following naming and colouring is used:

```
edge_SS = edge_B
edge_TS = edge_C
edge_PS = edge_A
```

Second step

Each of these newly created vertices is pushed against the encompassing sphere so their radii equal the length of the icosahedron's vertex-origin radius. This explains why the edges on the diagrams are named differently, because their lengths become different. The vertices do not lie on a flat triangle anymore, but on a wing-shaped 3D triangle. 12

Following is a more detailed description of the two steps taken in constructing the dome...

¹² See the diagram depicting the 5/8 dome in the illustration section.

Detailed calculations of the Geodesic Dome

Step 1 - Calculating Secondary and Tertiary Vertex coordinates and radii on the surface of an Icosahedron

General equation to locate a point located at a ratio **v/w** of the length between two vertices, starting from the first vertex.

$$\frac{v}{w}A_{-}B_{[i]} = A_{[i]} + \frac{v}{w}(B_{[i]} - A_{[i]}) = \frac{(w - v)A_{[i]} + vB_{[i]}}{w}$$

Note that when the subscript $'_{[i]}'$ is used, the same formula is applied 3 times, that is, once each for the x, y, and z coordinate of the vertex it subscripts. In other words, for the first calculation i = x, for the second calculation i = y, and for the third i = z. This gives you the 3 coordinates that describe this point between A and B in 3D.

Secondly, note the use of the underscore '_'. Programmers often use underscores to connect entities while maintaining their identity. Here it connects vertices A and B into one vertex A_B. Any other notation, such as AB or A-B could be confused with mathematical operations...

Locate the new vertices onto the 3-dimensional grid (calculate the coordinates).

To calculate the coordinates of the vertex lying one third from A, between A and B, the above formula becomes...

$$\frac{1}{3}A - B_{[i]} = A_{[i]} + \frac{1}{3}(B_{[i]} - A_{[i]}) = \frac{2A_{[i]} + B_{[i]}}{3}$$

To calculate the coordinates of the vertex lying two thirds from A, between A and B, use

$$\frac{2}{3}A_{-}B_{[i]} = A_{[i]} + \frac{2}{3}(B_{[i]} - A_{[i]}) = \frac{A_{[i]} + 2B_{\{i\}}}{3}$$

The middle vertex is the mean between the 2 outside vertices

$$\frac{1}{2}A - B_{[i]} = \frac{A_{[i]} + B_{[i]}}{2}$$

The radius is found using the '3D Distance Equation' given earlier. Note the three different radius lengths: the original primary vertex-origin length, the secondary vertex-origin length, and the tertiary vertex-origin length.

vertex	х	у	z	radius	approx. radius
Α	0	y 1	ф	$\sqrt{\phi+2}$	1.902113032
Al1	$\frac{1}{3}$	$\frac{2+\phi}{3}$	$\frac{2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	1.652012439
AJ1	$-\frac{1}{3}$	$\frac{2+\phi}{3}$	$\frac{2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
Al2	$\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\frac{\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
AIJ	0	$\frac{1+2\phi}{3}$	$\frac{\phi}{3}$	$\sqrt{\phi + \frac{2}{3}}$	1.511522628
AJ2	$-\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\frac{\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
I	1	ф	0	$\sqrt{\phi+2}$	
IJ1	$\frac{1}{3}$	ф	0	$\sqrt{\phi + \frac{10}{9}}$	
IJ2	$-\frac{1}{3}$	ф	0	$\sqrt{\phi + \frac{10}{9}}$	
J	-1	ф	0	$\sqrt{\phi+2}$	

Step 2 - Calculating Vertices on the Geodesic Dome

All of the vertices calculated so far are positioned on the surface of the original icosahedron.

To push the newly calculated vertices upwards so they are positioned on the encompassing sphere (just like the original icosahedron vertices do), we need to normalise them...

Normalisation is the process of dividing every coordinate of every vertex by its radius. This pushes all the vertices onto the surface of an imaginary sphere of radius 1.

This means that in the previous table, divide all the x, y, z values by the radius given. This results in the following table...

Note that this process does not exactly pushes the newly created vertices upwards, but scales all the radii so they are of equal size.

Geodesic Sphere Coordinates for Triangle AIJ

vertex	X	у	Z
Α	0	1	ϕ
		$\frac{1}{\sqrt{\phi+2}}$	$\frac{\phi}{\sqrt{\phi+2}}$
	0	0.52573111	0.85065080
Al1	1	$2+\phi$	2φ
	$3\sqrt{\phi+\frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$	$\frac{1}{3}$ $\frac{10}{4}$
			$3\sqrt{\phi + \frac{10}{9}}$
	0.20177410	0.730025574	0.65295472
AJ1	1	$\frac{2+\phi}{}$	$\frac{2\phi}{}$
	$-\frac{10}{3\sqrt{\phi+\frac{10}{9}}}$	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi+\frac{10}{9}}$
	1 /		1 /
A10	-0.20177410	0.730025574	0.65295472
AI2	2	$\frac{1+2\phi}{\sqrt{1+2\phi}}$	$\frac{\phi}{\sqrt{1-\phi^2}}$
	$3\sqrt{\phi+\frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi+\frac{10}{9}}$
	-		' '
AIJ	0.40354821	0.85472882	0.32647736
Alu	U	$\frac{1+2\phi}{3\sqrt{\phi+\frac{2}{3}}}$	$\frac{\phi}{3\sqrt{\phi+\frac{2}{3}}}$
		$3\sqrt{\phi+\frac{2}{3}}$	$3\sqrt{\phi+\frac{2}{3}}$
	0	0.93417235	0.35682208
AJ2	2	$1+2\phi$	φ
			10
	$3\sqrt{\phi+\frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi+\frac{10}{9}}$
	-0.40354821	0.85472882	0.32647736
1	1	φ	0
	$\sqrt{\phi+2}$	$\sqrt{\phi+2}$	
	0.52573111	0.85065080	0
IJ1	1	φ	0
	$\frac{10}{3\sqrt{4}+10}$	$\frac{10}{\sqrt{10}}$	
	$3\sqrt{\phi+\frac{16}{9}}$	$\sqrt{\psi^+ 9}$	
	0.20177410	0.97943208	0
IJ2	1	φ	0
	$3\sqrt{\phi+\frac{10}{10}}$	$\frac{10}{6+10}$	
	V' 9	1 ^Ψ ' 9	
	-0.20177410	0.97943208	0
J		$\frac{\phi}{}$	0
	$\sqrt{\phi}+2$	$\sqrt{\phi} + 2$	
	-0.52573111	0.85065080	0

Length of Geodesic Dome Edges

Since we moved the vertices to the surface of a sphere with radius 1, the length of the triangles will not be a nice "2" any more, nor will the triangles be equilateral.

There will be 3 different edge lengths throughout the geodesic dome. Applying the distance equation to any two vertices in the table above that form the particular edge will give the same results.

edge_A All 3 pairs of edges forming the corner of the main triangle

$$edge_{-}A = \sqrt{\frac{1}{3\sqrt{\phi + \frac{10}{9}}} - \frac{1}{\sqrt{\phi + 2}}}^{2} + \left(\frac{\phi}{\sqrt{\phi + 2}} - \frac{\phi}{\sqrt{\phi + \frac{10}{9}}}\right)^{2} = 0.34861548...$$

edge_B All edges connecting the green vertices, thus forming a hexagon

$$edge_B = \frac{2}{3\sqrt{\phi + \frac{10}{9}}} = 0.403548211...$$

edge_C All the edges going out from AlJ to the green vertices

$$edge_{-}C = \sqrt{\frac{1}{3\sqrt{\phi + \frac{10}{9}}}^{2} + \left(\frac{1 + 2\phi}{3\sqrt{\phi + \frac{2}{3}}} - \frac{\phi}{\sqrt{\phi + \frac{10}{9}}}\right)^{2} + \left(\frac{\phi}{3\sqrt{\phi + \frac{2}{3}}}\right)^{2}} = 0.41241149...$$

Calculations for 2 more adjoining icosahedron triangles are in the appendix.

Angular Information

So far we have derived vertex coordinates and the three types of edges of the geodesic dome. But there is more information to be found, such as the various angles present. There are 2 main types of angles, the radial angles (angle between two radii) and the dihedral angles (angle between two faces (triangles)).

The dihedral angles will be discussed first. In fact this information is NOT used in the animation, since the location of the object's vertices are used to construct the object. However, the angular information will be needed for more practical purposes where physical construction is required. The radial angles are discussed later as they are needed to build the actual dome from the hexagons. The program actually calculates all these values in geodome_print_values.cpp exactly for this purpose. It prints them out on a separate console alongside the actual animation.

Note that at his stage it becomes necessary to have a good picture of the physical dome. It is very helpful (and entertaining) to construct a model out of cardboard, and marking the vertices with the names used in this paper. The vertex, edge, and triangle tables should hold enough information to enable you to do this. You can multiply the above found values for the edges with any number you like (as long as all 3 edges are multiplied by the SAME value). This is possible because the numbers are actually relative to a radius of one. If for example you like a dome with radius of 10 cm, just multiply the length of the edges by 10...

Local axes

The whole world of animation exists in a global coordinate system whose three directions are referred to as **world axes**. Animation objects existing in this world have their own local coordinate system, depicted by **local axes**¹³.

To enable us to orientate the geodesic dome in animation, it is necessary to know where the geodesic sphere cuts the local axes. This naturally depends on how the coordinates were ordered and named in the first place and is therefore only applicable to this particular situation.

y axis

Cuts from below through the center of edge_KL1_KL2 upwards through the center of edge_IJ1_IJ2

x axis

Cuts from the left through the center of edge_FG1_FG2 rightwards through the center of edge_EH1_EH2

z axis

Cuts from the back through the center of edge_CD1_CD2 forwards through the center of edge_AB1_AB2

¹³ Refer to the "Spherical coordinates" supplementary section to see the naming and orientation of the local coordinate system we use.

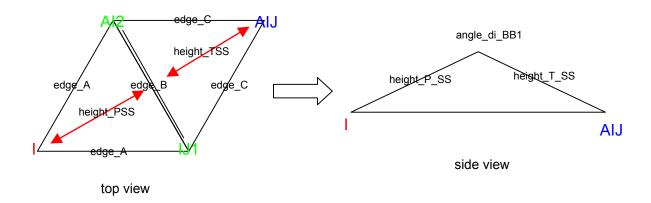
Dihedral Angles

Dihedral angles are those angles formed between meeting faces (triangles). There are 4 types of angles between faces.

Note in the equations that if 2 variable names are used at the start of the equation, then the first naming uses the generalised form (t for tertiary, p for primary and s for secondary vertex). These are the names used throughout the program. The second naming is the naming for the particular triangle. This second naming also relates to the figure.

angle_di_BB1 Angle between 2 'B' edges inside a lcosahedron triangle

Joins Hexagon to Pentagon



Using the distance equation on the given vertices ...

$$chord PT = |I AIJ| = \sqrt{\left(\frac{1}{\sqrt{\phi + 2}}\right)^2 + \left(\frac{1 + 2\phi}{3\sqrt{\phi + \frac{2}{3}}} - \frac{\phi}{\sqrt{\phi + 2}}\right)^2 + \left(\frac{\phi}{3\sqrt{\phi + \frac{2}{3}}}\right)^2} = 0.64085182$$

Using Pytagoras' equation for right angled triangle: $a^2 = b^2 + c^2$

$$height_PSS = \sqrt{edge_A^2 - \left(\frac{edge_B}{2}\right)^2} = 0.284288423$$

$$height_TSS = \sqrt{edge_C^2 - \left(\frac{edge_B}{2}\right)^2} = 0.359680932$$

method

name float triangle_height_equi(float edgeA, float edgeB)

location geodome_utilities.cpp

description outputs the height of the PSS or TSS triangle

The angle can now be found from the general cosine equation

$$\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}$$

which for our purposes is transformed to

$$angle_di_BB1 = \cos^{-1}\frac{height_P_SS^2 + height_T_SS^2 - chord_PT^2}{2*height_P_SS*height_T_SS}$$

= 2.94334859... radians

or 168.6414519°

or 168°38°29.2°

method

name float triangle_arccos(float s1, float s2, float opp_side)

location geodome_utilities.cpp

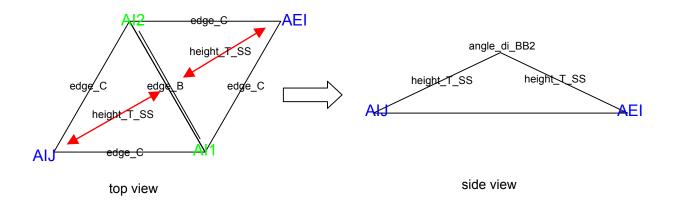
description outputs the angle in radians given the length of 3 sides, using the cosine

equation

Divide by 2 for "per triangle" angle

angle_di_BB2 Angle between 2 'B' edges joining 2 Icosahedron triangles

Joins 2 hexagons



This is a simpler version of angle di BB1

$$chord\ _TT = |AIJ\ _AEI| = \sqrt{\frac{1+\phi}{3\sqrt{\phi + \frac{2}{3}}}}^2 + \left(\frac{1+2\phi}{3\sqrt{\phi + \frac{2}{3}}} - \frac{1+\phi}{3\sqrt{\phi + \frac{2}{3}}}\right)^2 + \left(\frac{\phi}{3\sqrt{\phi + \frac{2}{3}}} - \frac{\phi}{3\sqrt{\phi + \frac{2}{3}}}$$

= 0.713644179

$$height_T_SS = height = \sqrt{edge_C^2 - \left(\frac{edge_B}{2}\right)^2} = 0.359680932...$$

The angle can now be found from the general cosine equation

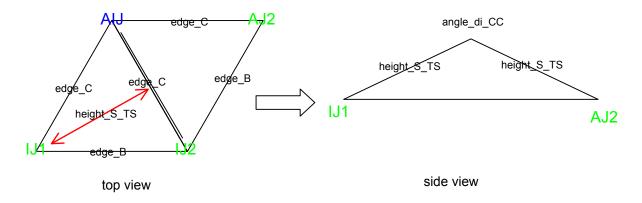
$$angle_di_BB2 = cos^{-1} \frac{2*height_T_SS^2 - chord_TT^2}{2*height_T_SS^2} = 2.889262286...radians$$

or 165.5425349°

or 165° 32' 33.1"

angle_di_CC Angle between 2 meeting C Edges

Joins 2 hex triangles in forming a hexagon



$$chord \ _SS2 = |IJ1_AJ2| = \sqrt{\left(\frac{1}{\sqrt{\phi + \frac{10}{9}}}\right)^2 + \left(\frac{\phi}{\sqrt{\phi + \frac{10}{9}}} - \frac{1 + 2\phi}{3\sqrt{\phi + \frac{10}{9}}}\right)^2 + \left(\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}\right)^2 + \left(\frac$$

= 0.698966007...

Both heights are the same → only one needs to be calculated...thank GO...er ...PHI

Note that edge_B is a smidgen shorter compared to edge_C, like, if edge_B is 40.3 cm long for a 1 meter radius dome, edge_C will be 41.2 cm long ... about one cm difference.

A straight needs to be drawn connecting both vertices IJ1 and AJ2. This line will be perpendicular to the folding edge. Even though this line will not cut through the middle, the correct angle will be maintained.

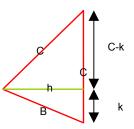
Problem is that the end of the height does not coincide with the middle of AlJ IJ2...

Interlude

We now exaggerate the unevenness of the sides (edge_A and edge_B) for clarity's sake. Question is, what is k?

In the little triangle,

$$h^2 = B^2 - k^2$$
 (1)



In the big triangle,

$$h^{2} = C^{2} - (C-k)^{2}$$

$$C^{2} - (C^{2} - 2Ck + k^{2})$$

$$2Ck - k^{2}$$
 (2)

From (1) and (2), $B^2 = 2Ck$

$$k = \frac{B^2}{2C}$$

Calculating h by inserting the last equation into (1),

$$h^2 = B^2 - \left(\frac{B^2}{2C}\right)^2$$

$$h = \sqrt{B^2 - \left(\frac{B^2}{2C}\right)^2}$$

This equation gives you the height of a triangle, the perpendicular of which does not end up in the midpoint of an edge.

Transform the above found equation into our triangle,

$$height_S_TS = \sqrt{edge_B^2 - \left(\frac{edge_B^2}{2*edge_C}\right)^2} = 0.35195098$$

method

name float triangle_height_unequi(float oddEdge, float simEdge)

location geodome_utilities.cpp

description outputs the height of the S PS or S TS triangle

Lastly, using the general cosine equation again, we reveal,

$$angle_di_CC = \cos^{-1} \frac{2height_S_TS^2 - chord_SS2^2}{2*height_S_TS^2}$$

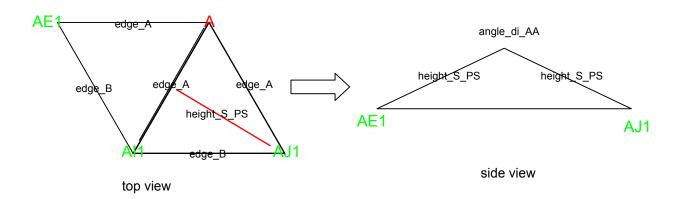
$$angle_di_CC = cos^{-1} \left(1 - \frac{chord_SS2^2}{2*height_S_TS^2} \right) = 2.904603471...radians$$

or 166.42152° or 166°25°17.4

Divide by 2 for "per triangle" angle

angle_di_AA Angle between 2 meeting A edges

Joins 2 pent triangles forming a pentagon. Joins 2 edges of different icosahedron triangles.



This is a similar situation as the angle_CC calculations

$$chord _SS1 = |AE1_AJ1| = \sqrt{\frac{1+\phi}{3\sqrt{\phi + \frac{10}{9}}}^2 + \left(\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}\right)^2 + \left(\frac{1}{3\sqrt{\phi + \frac{10}{9}}}\right)^2} = 0.652954723...$$

$$height_S_PS = height = \sqrt{edge_B^2 - \left(\frac{edge_B^2}{2*edge_A}\right)^2} = 0.329084958...$$

$$angle_{di}AA = \cos^{-1}\left(1 - \frac{chord_{SS1}^{2}}{2*height_{S}PS^{2}}\right) = 2.889651935...radians$$

or 165.5648601°

or 165° 33° 53.5

Summary

hexagon b edge

Joins 2 hexagons

165.542535 / 2 = 82.7712675 degrees

Rotation = 180 - 82.7712675 = 97.2287325 degrees

pentagon b edge

Joins pentagon to hexagon

Maintain the angle of one hexagon B edge (see above) and subtract this value from the Pentagon-Hexagon angle, so we have a Pentagon angle of ...

168.641452 - 82.7712675 = 85.8701845 degrees

Rotation = 180 - 85.8701845 = 94.1298155 degrees

hexagon c edge

Joins 2 hex triangles in forming a hexagon

166.42152 / 2 = 83.21076 degrees

Rotation = 180 - 83.21076 = **96.78924 degrees**

pentagon a edge

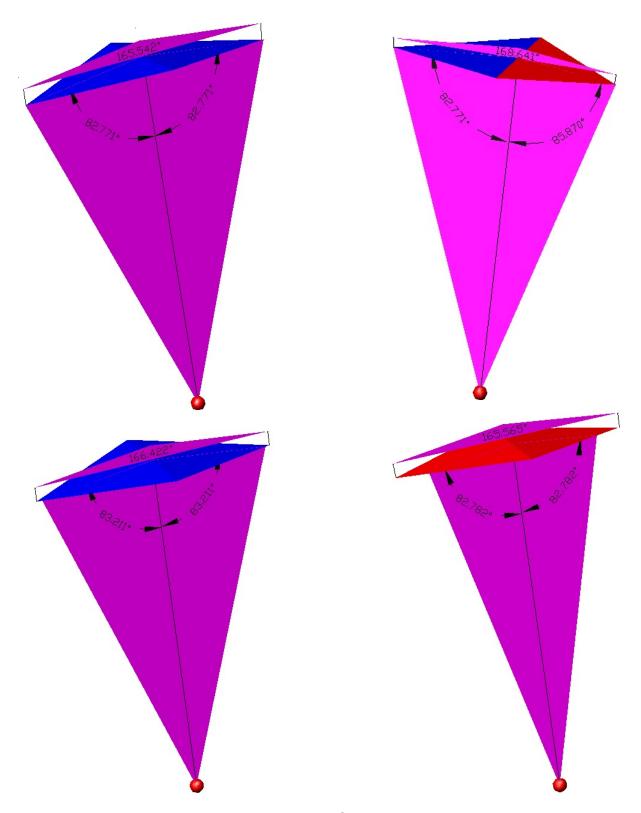
Joins 2 pent triangles in forming a pentagon

165.5648601 / 2 = 82.78243 degrees

Rotation = 180 - 82.78243 = 97.21757 degrees

Illustrations

Following illustrations shows the angles calculated above but this time derived from CAD (rounded to 1/1000th). They are identical, thus proving the calculations right. The pentagon triangles are in red, the hexagon triangles in blue. Care was taken to ensure the face formed by the angle (in purple) was perpendicular to the dome triangle face.



Page 29 of 76

Designing animation objects

Having calculated various dimensions and angles, we have come to the point where we can start constructing our animation objects. In fact, we have a lot more information than we actually need for this particular program which after all is mainly concerned with coordinate values because it needs to know where to draw its objects and in what trajectories they need to be moved.

The type of geodesic dome we have been describing is fascinating because it is inherently simple in its construction. The whole dome can be built using 2 different triangles: the **bcc** triangle and the **baa** triangle. 6 bcc triangles form a hexagon and 5 baa triangles form a pentagon. The whole dome is then built by connecting these hexagons and pentagons.

A good way to go about building the dome is by starting with the bcc triangle only. This way a number of hexagons can be built and these hexagons can be interconnected to give you the basic dome shape. The pentagons appear as windows within this dome¹⁴.

See also the web site http://www.oregonvos.net/~jgarlitz/geodome.htm for a practical discussion on building a real observatory using the 2 triangular blocks mentioned above. Compare the sizes (approximated in inches...) with the ones we derive from our equations.

So the following discussion will be about the construction of a bcc triangle block. Many varieties are possible here: we will base ours on the construction of a triangular pyramid ¹⁵, which is the object created by joining the 3 vertices of a bcc triangle to the center of the dome. The height of the object as well as the thickness of the 'walls' of the object will be variable (the drawings on next pages should make this clear). Changing the height of the triangular pyramid results in a *truncated* (cut) triangular pyramid. The resulting object is part of the geodesic dome in a real sense, it allows us to create the greatest variety for our building block; from solid to paper thin, and from flat to entire pyramids while maintaining the same dome shape on the outside at all times. The 'cut' triangular pyramid sections will be referred to as **triangle blocks** from here on.

¹⁴ View the animation by double clicking dirkdome.exe. The folder called 'resources' will need to be present in the same directory.

¹⁵ A pyramid with a triangular base unlike the ancient pyramid monuments which have a quadrilateral base

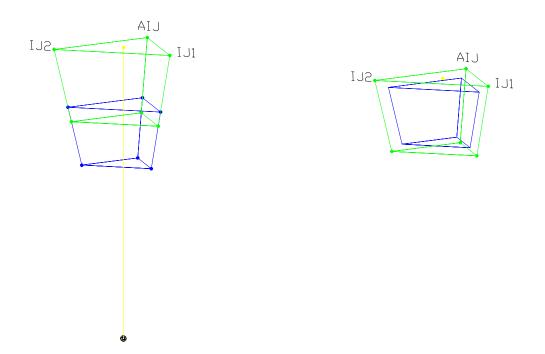
Applying an even thickness - background

When using a graphics application such as a CAD, it is easy to apply thickness to surfaces. However, we are working at a lower level ... as if we were writing the program for the CAD application itself. This means we need to calculate all the necessary coordinates ourselves.

This part of the project has proved to be the most challenging, mainly because there are many ways of achieving this goal. Whichever way you choose, it is assumed that we need to construct an object using material with an even thickness. Here are the systems I explored ...

The 'Russian Doll' method

This is the most obvious one, based on scaling. All the vertices of the tetrahedron are scaled with the world origin (centre of the sphere) as base. The figure shows a scaling of 0.8. The green block is the original one, the blue one is scaled. The center axis runs through the in-circle of the top triangle (more on that below). There is one problem: 'How do you line up the thing so it looks like the figure on the right ...



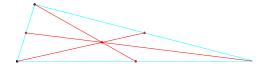
On top of that, we still need to re-locate the blue vertices so they line up with the bottom green ones The line-up would involve local scaling. However, since our tetrahedron is irregular, it is not a simple task to find the base point (centre) of this tetrahedron to enable this scaling. Nevertheless it led me to explore this issue of finding the proper midpoint of the tetrahedron. First of all, what is the midpoint of a triangle?

Centers of a triangle

It is surprising for a simple object like the triangle how many different types of centers exist. I outline the most important ones below. The examples show a disproportional triangle in order to emphasise the differences.

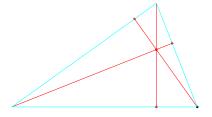
1. Gravitational center

The midpoint derived at by connecting each vertex to the middle of the opposite side. Also called the **Barycenter** or the **center of mass**.



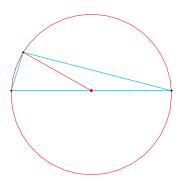
2. Orthocenter

The midpoint derived at by drawing a perpendicular from each vertex to the opposite side. Note that this only works for triangles having all angles less than 90 degrees.



3. Circumradius

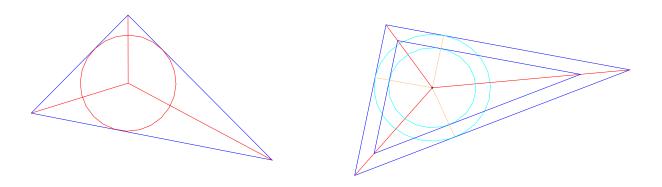
The center of the outer circle drawn around the 3vertices. Interestingly, the center is the midpoint of one of the sides.



4. In-center

The center of the inner circle touching all 3 sides.

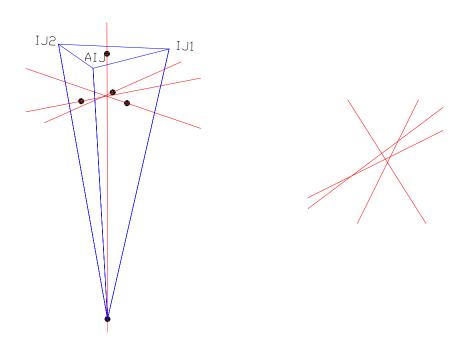
The in-center midpoint seems the one that mostly suits our purposes because it treats the center of the inner circle as a vanishing point for the encompassing triangle. Imagine the radius of the circle becoming smaller: the triangle will scale proportionally. This could be used in order to apply an even thickness to the top and bottom faces of the triangle block.



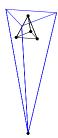
Encouraged with this method of scaling in 2D, I endeavoured to apply this to 3D. However it soon became clear that the non-regular-ness of our tetrahedron would pose a problem ...

5. Inner-radius system

The inner-circle center of each triangle face was calculated and perpendiculars drawn from each of these faces. However, the irregular-ness of the tetrahedron resulted in these perpendiculars not meeting in the center.



It is interesting to imagine drawing a new tetrahedron using these inner-circle points and start the process again, thus achieving a center by constant iteration. This should be easy to achieve with a computer.



In fact, the in-radius of a regular tetrahedron is ...

$$tetra - in - radius = \frac{\sqrt{6}}{12}$$

Afterthought

In the end, the method I used didn't need to calculate in-centers or tetrahedron midpoints.

The only midpoint used is the origin of the dome (0,0,0).

<insert start from planes.doc>

Applying an even thickness

In a previous version of this essay's chapter, I used a system exploiting a mixture of the inner-circle method plus some standard coordinate - and Euclidean geometry. The system was convoluted and ... wrong. The problem was that some calculations were not measuring thickness perpendicular to the surface.

Though the results were close enough for the animation which only needed to give a demonstration, I needed accurate measurements for the CAD drawings I needed to design.

In the process of solving this problem, I came upon a much more elegant solution using matrices. The starting point for this system is that we can represent each surface with an equation: the *Plane Equation*.

Translating the plane

Applying thickness is equivalent to translating the plane in a direction perpendicular to the plane over a given length (thickness factor). For each plane, the unit normal is calculated. Once that is done, we simply need to multiply this unit normal with the thickness factor and apply this to the plane's coordinates, effectively translating the plane in the direction of this normal by the required distance (thickness).

Finding the coordinates

The intersection of 2 planes constitutes a line, and the intersection of 3 planes constitutes a point. These points being the coordinates we need to enable drawing the triangle block.

Following explanation only leads up to one vertex of a hexagon triangle block only, and all explanation has been kept to a minimum.

Example triangle block

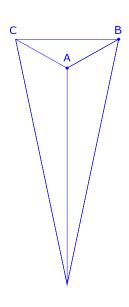
The 5/8 dome contains 2 types of triangle blocks, the Pentagon and the Hexagon triangle block. The size and orientation of these depend on the situation. For clarity we just concentrate on one particular set of coordinates:

We assume, for example, the vertices AIJ, IJ1, IJ2 and refer to them as A, B, C respectively in the figures.

$$A = AIJ = \begin{bmatrix} 0.0\\ 9.3417235\\ 3.5682208 \end{bmatrix}$$

$$B = IJ1 = \begin{bmatrix} 2.017741 \\ 9.7943208 \\ 0.0 \end{bmatrix}$$

$$C = IJ2 = \begin{bmatrix} -2.017741\\ 9.7943208\\ 0.0 \end{bmatrix}$$



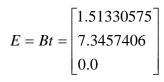
The

n we apply the length factor to the radii formed by the vertices A, B, and C and the center of the dome. This is ok because all the radial lengths are the same....

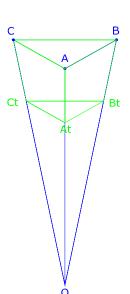
$$Ut_{[i]} = U_{[i]} * (1 - length _ factor)$$

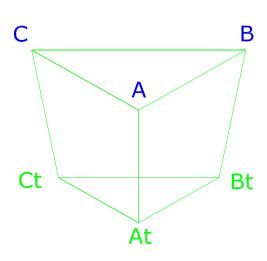
Given a length_factor of 0.25, the 't' coordinates are ...

$$D = At = \begin{bmatrix} 0.0 \\ 7.006292625 \\ 2.6761656 \end{bmatrix}$$



$$F = Ct = \begin{bmatrix} -1.51330575\\ 7.3457406\\ 0.0 \end{bmatrix}$$

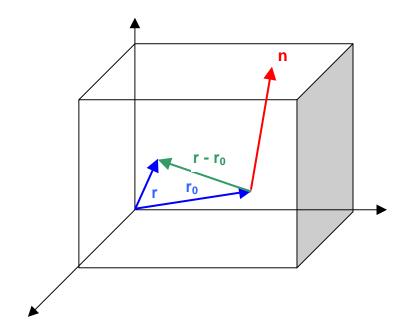




Plane equations - General

vector equation

Defines a plane by a point (P0) on the plane and a normal (vector orthogonal to the plane).



$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

scalar equation

if in the above figure, the coordinates are

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\mathbf{r}_0 = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix}$$

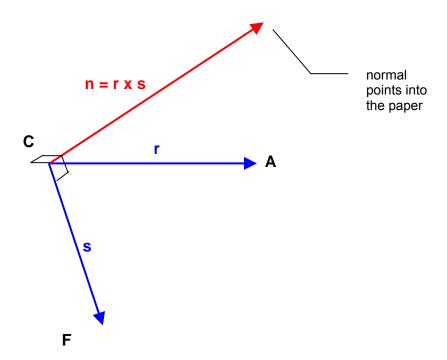
then

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

The ACF Plane

We already know the vertices on this plane. We just state 3 of them so we can calculate the normal to this plane. The plane equations need not be known since we are not interested in intersections with this plane.

$$A = \begin{pmatrix} 0.0 \\ 9.3417235 \\ 3.5682208 \end{pmatrix} \qquad C = \begin{pmatrix} -2.017741 \\ 9.7943208 \\ 0.0 \end{pmatrix} \qquad F = \begin{pmatrix} -1.51330575 \\ 7.3457406 \\ 0.0 \end{pmatrix}$$



Calculate the normal vector

Use the right hand rule to make the normal point towards the middle of the block. This implies we need vectors $CA = \mathbf{r}$ and $CF = \mathbf{s}$

$$\mathbf{r} = \begin{bmatrix} 2.017741 \\ -0.4525973 \\ 3.5682208 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 0.50443525 \\ -2.4485802 \\ 0.0 \end{bmatrix}$$

Use the determinant method to calculate the cross product

$$\mathbf{r} \times \mathbf{s} = \begin{bmatrix} 8.7370748 \\ 1.79993635 \\ -4.712294629 \end{bmatrix}$$

This vector starts from the (0,0,0) point and points inwards perpendicular to the AC plane, its length being the area of the parallelloid formed by the Cr - Al - Fl points.

Adding unit normal to plane ACF to get projected plane coordinates unit normal

$$\mathbf{n}_{u} = \frac{\mathbf{r} \times \mathbf{s}}{|\mathbf{r} \times \mathbf{s}|} = \begin{bmatrix} 0.8660254 \\ 0.17841104 \\ -0.467086177 \end{bmatrix}$$

Say the thickness of the material is 0.3 ... we just scale the unit normal with this factor:

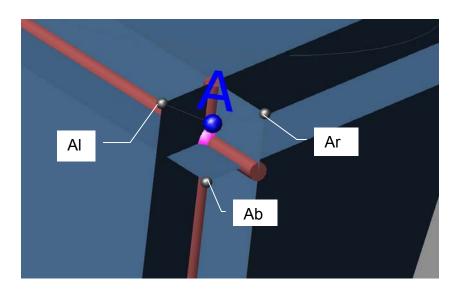
$$\mathbf{n}_{0.3} = 0.3 * \begin{bmatrix} 0.8660 \\ 0.1784 \\ -0.4671 \end{bmatrix} = \begin{bmatrix} 0.25980762 \\ 0.05352331 \\ -0.140125853 \end{bmatrix}$$

and lastly, we translate this normal from the center (0,0,0) point to the ACF vertices.

$$Ar = A + \mathbf{n}_{0.3} = \begin{pmatrix} 0.25980762 \\ 9.39524681 \\ 3.42809495 \end{pmatrix} \qquad Cl = C + \mathbf{n}_{0.3} = \begin{bmatrix} -1.757933378 \\ 9.847844112 \\ -0.140125853 \end{bmatrix} \qquad Fl = F + \mathbf{n}_{0.3} = \begin{pmatrix} -1.253498128 \\ 7.39926391 \\ -0.14012585 \end{pmatrix}$$

Throughout this section of the document, we will refer to the projected points as Pl, Pr, Pt, and Pb,

for left, right, top, bottom. These are allocated according to the point's location when viewed from the front.



Page 39 of 76

Equation for the Ar - CI - FI plane

In general, for the previously calculated normal

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

and a point on the plane (which is any of the calculated projected vertices)

$$P = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

The plane equation is

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

So for this plane, choosing point CI

$$8.737075(x+1.757933) + 1.799936(y-9.847844) - 4.712295(z+0.140126) = 0$$

 $8.737075x + 1.799936y - 4.712295z = 3.026611$

Choosing point Ar

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

The CBE plane

$$C = \begin{pmatrix} -2.017741\\ 9.7943208\\ 0.0 \end{pmatrix}$$

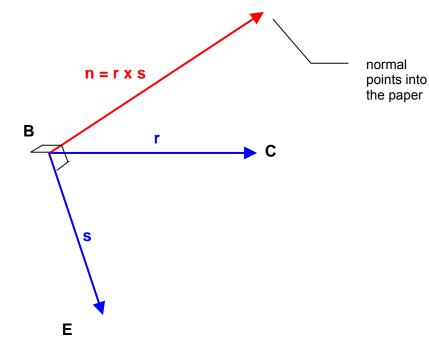
$$B = \begin{pmatrix} 2.017741\\ 9.7943208\\ 0.0 \end{pmatrix}$$

$$E = \begin{pmatrix} 1.51330575 \\ 7.3457406 \\ 0.0 \end{pmatrix}$$

$$\mathbf{r} = \begin{vmatrix} -4.035482 \\ 0.0 \\ 0.0 \end{vmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0.0 \\ 0.0 \\ 9.88120132 \end{bmatrix}$$

$$Cr = \begin{pmatrix} -2.017741 \\ 9.7943208 \\ 0.3 \end{pmatrix}$$



$$\mathbf{s} = \begin{bmatrix} -0.50443525 \\ -2.4485802 \\ 0.0 \end{bmatrix}$$

$$\mathbf{n}_{u} = \begin{bmatrix} 0.0 \\ 0.0 \\ 1 \end{bmatrix}$$

$$Bl = \begin{pmatrix} 2.017741 \\ 9.7943208 \\ 0.3 \end{pmatrix}$$

$$Bl = \begin{pmatrix} 2.017741 \\ 9.7943208 \\ 0.3 \end{pmatrix} \qquad El = \begin{pmatrix} 1.51330575 \\ 7.3457406 \\ 0.3 \end{pmatrix}$$

 $\mathbf{n}_{0.3} = \begin{bmatrix} 0.0\\0.0\\0.3 \end{bmatrix}$

Plane equation for BI

$$9.88120132(z - 0.3) = 0$$
$$z = 0.3$$

normal points into the paper

The BAD plane

$$B = \begin{pmatrix} 2.017741 \\ 9.7943208 \\ 0.0 \end{pmatrix}$$

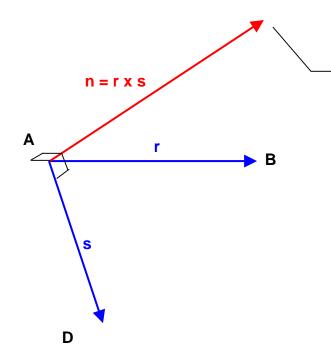
$$A = \begin{pmatrix} 0.0\\ 9.3417235\\ 3.5682208 \end{pmatrix}$$

$$D = \begin{pmatrix} 0.0 \\ 7.006292625 \\ 2.6761656 \end{pmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 2.017741 \\ 0.4525973 \\ -3.5682208 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} -8.7370748 \\ 1.79993635 \\ -4.7122946 \end{bmatrix}$$

$$Br = \begin{pmatrix} 1.75793337 \\ 9.84784411 \\ -0.140125853 \end{pmatrix} \qquad Al = \begin{pmatrix} -0.25980762 \\ 9.39524681 \\ 3.4280949 \end{pmatrix} \qquad Dl = \begin{pmatrix} -0.25980762 \\ 7.0598159 \\ 2.5360397 \end{pmatrix}$$



$$\mathbf{r} = \begin{bmatrix} 2.017741 \\ 0.4525973 \\ -3.5682208 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 0.0 \\ -2.335430875 \\ -0.8920552 \end{bmatrix}$$

$$\mathbf{n}_{u} = \begin{bmatrix} -0.8660254 \\ 0.17841104 \\ -0.467086177 \end{bmatrix} \qquad \mathbf{n}_{0.3} = \begin{bmatrix} -0.2598076 \\ 0.05352331 \\ -0.14012585 \end{bmatrix}$$

$$Al = \begin{pmatrix} -0.25980762 \\ 9.39524681 \\ 3.4280949 \end{pmatrix}$$

$$Dl = \begin{pmatrix} -0.25980762 \\ 7.0598159 \\ 2.5360397 \end{pmatrix}$$

Plane equation for Al

-8.7370748(x+0.25980762)+1.79993635(y-9.39524681)-4.7122946(z-3.4280949)=0-8.737075 x + 1.799936 y - 4.712295 z = 3.026612

normal

points into the paper

The BCA plane

$$B = \begin{pmatrix} 2.017741 \\ 9.7943208 \\ 0.0 \end{pmatrix}$$

$$C = \begin{pmatrix} -2.017741\\ 9.7943208\\ 0.0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0.0\\ 9.3417235\\ 3.5682208 \end{pmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 4.035482 \\ 0.0 \\ 0.0 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0.0 \\ -14.3994908 \\ -1.8264482 \end{bmatrix}$$

$$Bb = \begin{pmatrix} 2.017741 \\ 9.496705367 \\ -0.0377498896 \end{pmatrix} \qquad Cb = \begin{pmatrix} -2.017741 \\ 9.496705367 \\ -0.0377498896 \end{pmatrix} \qquad Ab = \begin{bmatrix} 0.0 \\ 9.044108067 \\ 3.5304709 \end{bmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 4.035482 \\ 0.0 \\ 0.0 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 2.017741 \\ -0.4525973 \\ 3.5682208 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0.0 \\ -14.3994908 \\ -1.8264482 \end{bmatrix} \qquad \mathbf{n}_{u} = \begin{bmatrix} 0.0 \\ -0.99205144 \\ -0.125832965 \end{bmatrix} \qquad \mathbf{n}_{0.3} = \begin{bmatrix} 0.0 \\ -0.29761543 \\ -0.0377498896 \end{bmatrix}$$

$$Cb = \begin{pmatrix} -2.017741\\ 9.496705367\\ -0.0377498896 \end{pmatrix}$$

$$Ab = \begin{bmatrix} 0.0 \\ 9.044108067 \\ 3.5304709 \end{bmatrix}$$

The plane equation for point Ab

$$-14.399491(y - 9.044108) - 1.826448(z - 3.530471) = 0$$

$$-14.399491y - 1.826448z = -136.678773$$

normal

points into the paper

The EDF plane

$$E = \begin{pmatrix} 1.51330575 \\ 7.3457406 \\ 0.0 \end{pmatrix}$$

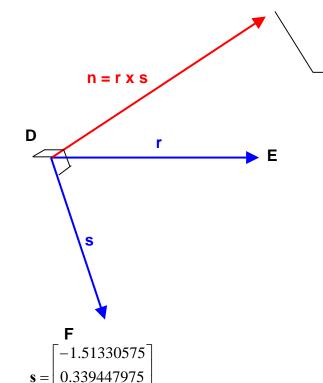
$$D = \begin{pmatrix} 0.0\\ 7.006292625\\ 2.6761656 \end{pmatrix}$$

$$F = \begin{pmatrix} -1.51330575 \\ 7.3457406 \\ 0.0 \end{pmatrix}$$

$$\mathbf{r} = \begin{bmatrix} 1.51330575 \\ 0.339447975 \\ -2.6761656 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} -1.51330575 \\ 0.339447975 \\ -2.6761656 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0.0 \\ 8.09971358 \\ 1.02737714 \end{bmatrix}$$

$$Et = \begin{pmatrix} 1.51330575 \\ 7.64335603 \\ 0.0377498896 \end{pmatrix}$$



$$\mathbf{n} = \begin{bmatrix} 0.0 \\ 8.09971358 \\ 1.02737714 \end{bmatrix} \qquad \mathbf{n}_{u} = \begin{bmatrix} 0.0 \\ 0.99205144 \\ 0.125832965 \end{bmatrix} \qquad \mathbf{n}_{0.3} = \begin{bmatrix} 0.0 \\ 0.29761543 \\ 0.0377498896 \end{bmatrix}$$

$$Et = \begin{pmatrix} 1.51330575 \\ 7.64335603 \\ 0.0377498896 \end{pmatrix} \qquad Dt = \begin{pmatrix} 0.0 \\ 7.30390805779 \\ 2.7139154896 \end{pmatrix} \qquad Ft = \begin{pmatrix} -1.51330575 \\ 7.64335603 \\ 0.0377498896 \end{pmatrix}$$

$$Ft = \begin{bmatrix} -1.31330373 \\ 7.64335603 \\ 0.0377498896 \end{bmatrix}$$

The plane equation for point Dt

$$8.099714(y-7.303908)+1.027377(z-2.713915)=0$$

 $8.099714y+1.027377z=61.947778$

Plane intersections

Deriving the points from these plane equation is a very easy procedure if you know about matrices and how to solve equations using the Reduced Row Echelon form. We can determine each of the coordinates by intersecting 3 planes; the 3 planes can only intersect in one point.

Point 1: Intersection of planes Ar - Cl - Fl, Br - Al - Dl, and Bb - Cb - Ab

The plane equations are

$$8.737075 x + 1.799936 y - 4.712295 z = 3.026611$$
$$-8.737075 x + 1.799936 y - 4.712295 z = 3.026612$$

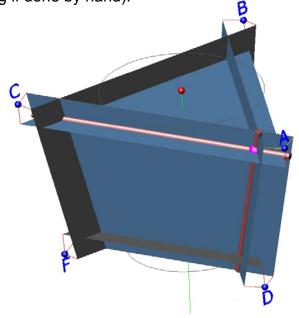
$$-14.399491$$
 y -1.826448 z = -136.678773

The derived matrix is

Put this in the calculator and we get

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 9.130997 \\
0 & 0 & 1 & 2.845450
\end{bmatrix}$$

The values in the last column are the coordinates of the intersection of the 3 planes. The procedure used to put the former matrix in Reduced Row Echelon form is very simple (though time consuming if done by hand).

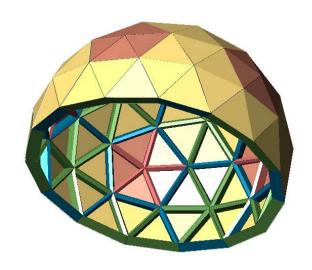


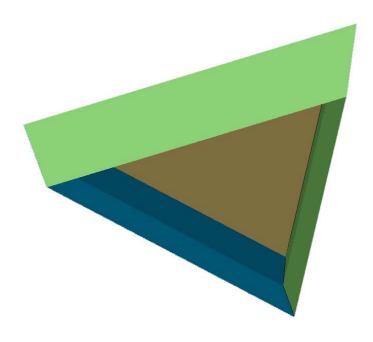
Page 45 of 76

Illustrations

I implemented the technique described above to create a library application for AutoCAD 2005 / 6 .

Following are 2 example drawings:





Radial Angles

Radial angles are those angles separating two vectors. Primarily needed for rotating, moving objects into virtual 3D space.

To construct a dome, whatever its type (whole, 5/8, or half of the geodesic sphere), we need to position a pentagon at the top. The pentagon whose center is vertex A is arbitrarily (but conveniently) chosen for this purpose. In this context, when we refer to a vertex, such as A or AIJ, we point to the center of a particular hexagon or pentagon.

Having established Pentagon A at the top, all the radial angles needed to position the hexagons are calculated using A as a reference.

There are 2 types of angles when working in 3D space: 16

- 1. the angle around the Y axis, (in the X-Z plane)
- 2. the angle from the above found vector to the Y axis.

Due to the 5 fold symmetry, the first type of angle is easy to find:

- With A on top, travelling down the Y axis, the first lot of hexagons we meet (all of which have the same Y value) are separated by 360/5 degrees.
- The hexagons in the second lot of hexagons are separated by the same angle.
- The hexagons in the third lot of hexagons are separated by the same angle, but out of phase by 360/10 degrees.
- The hexagons in the fourth lot of hexagons are separated by the same angle, and also out of phase by 360/10 degrees.

Finding the second lot of angles requires a little more calculation:

Finding these angles really amounts the finding the 4 Y values of the 4 lots of hexagons described above.

Radial angles used to line up objects

angle_AlJ_Yaxis	Used to line up the center of the hexagon with the local Y axis.
	Used to set the local orientation of the triangle object in hex.cpp
	and scene.cpp

angle A Yaxis Used to line up the center of the pentagon with the local Y axis.

¹⁶ see "spherical coordinates" in the appendix

Radial angles used to construct the dome (see hexdome.cpp of the program)

angle_A_AIJ	angle from the top pentagon to the first lot of hexagons
angle_A_DJI	angle from the top pentagon to the second lot of hexagons
angle_A_DGJ	angle from the top pentagon to the third lot of hexagons
angle_A_CGD	angle from the top pentagon to the fourth lot of hexagons

Calculating the radial angle between 2 vertices - general equation

The cosine of the radial angle is

$$\cos_{-}angle = \frac{v1_{[x]} * v2_{[x]} + v1_{[y]} * v2_{[y]} + v1_{[z]} * v2_{[z]}}{length_{-}v1 * length_{-}v2}$$

So the radial angle between 2 vertices is

$$angle_v1_v2 = \cos^{-1}\frac{v1_{[x]} * v2_{[x]} + v1_{[y]} * v2_{[y]} + v1_{[z]} * v2_{[z]}}{length_v1 * length_v2}$$

method

name float vector_separation_3d(float v1[], float v2[])

location geodome_utilities.cpp

description outputs the angle in radians between 2 vectors starting at the origin

Applying the above found method to calculate one angle...

angle_A_Yaxis

Angle between Y axis and Pentagon A (vertex A). Used to line up the center of the pentagon with the Y axis.

coordinates for the Y axis are (0, 1, 0)

$$angle _A _Yaxis = \cos^{-1} \frac{A_{[x]} * Yaxis_{[x]} + A_{[y]} * Yaxis_{[y]} + A_{[z]} * Yaxis_{[z]}}{length _A * length _Yaxis} = \cos^{-1} \left(\frac{1}{\sqrt{\phi + 2}}\right)$$

1.017222... radians

or 58.2825256°

or 58°16°57.09

Applying the vector separation 3d method as above, to the other vertices reveals...

angle_AIJ_Yaxis = 0.364864 radians

Used to line up the center of the hexagon with the Y axis

$angle_A_AIJ = 0.652358 \ radians$

angle from the top pentagon to the first lot of hexagons.

$angle_A_DJI = 1.38209 \ radians$

angle from the top pentagon to the second lot of hexagons

$angle_A_DGJ = 1.75951 \ radians$

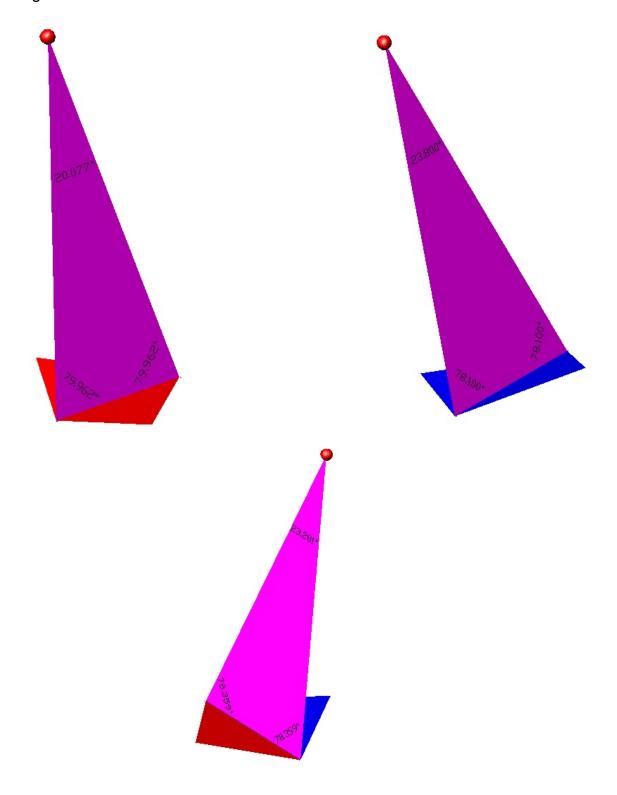
angle from the top pentagon to the third lot of hexagons

$angle_A_CGD = 2.48923 \ radians$

angle from the top pentagon to the fourth lot of hexagons

Edge-Radial angles

Following angles have been derived using CAD for additional information. The measurements are taken from inside the dome and are the planes formed by one of the edges to the center of the dome.



Supplement 1 - Classification / nomenclature

For programming purposes

P = Primary Vertex

S = Secondary Vertex

T = Tertiary Vertex

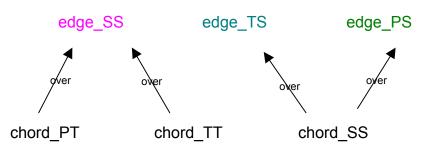
Edges

Chords[over edge]

chord_PT_SS chord_TT_SS chord_SS_TS chord_SS_PS

Angle[chord,edge]

angle_PT_SS angle_TT_SS angle_SS_TS angle_SS_PS



Supplement 2 - Equation Cells

Non - normalised vertices

The icosahedron has been triangulated but the newly created vertices still lie on the surface of the icosahedron.

All coordinates may be either positive or negative.

See the Vertex Tables for actual coordinates using these cells (in red).

IP - Icosahedron Primary Vertices

coordinate 1	coordinate 2	coordinate 3	icosahe	dron radius
0	1	ф	$\sqrt{\phi+2}$	IPR 1.902113022

IS - Icosahedron Secondary Vertices (adjacent to a Primary Vertex)

CC	oordinate 1	coordinate 2		coo	ordinate 3	icosahedron radius		
0		$\frac{1}{3}$	IS1	ф		$\sqrt{\phi + \frac{10}{9}}$	ISR 1.652012439	
$\frac{2\phi}{3}$	IS4 1.078689325	$\frac{1}{3}$		$\frac{2+\phi}{3}$	IS5 1.206011329			
$\frac{\phi}{3}$	IS3 0.539344662	$\frac{2}{3}$	IS2	$\frac{1+2\phi}{3}$	IS6 1.412022659			

IT - Icosahedron Tertiary Vertices (adjacent to Secondary Vertices)

coordinate 1	coordinate 2	coordinate 3	Icosahedron radius
$\frac{1+\phi}{3}$	$\frac{1+\phi}{3} \frac{177}{0.872677996}$	$\frac{1+\phi}{3}$	$\sqrt{\phi + \frac{2}{3}}$ ITR 1.511522628
$\frac{\phi}{3}$ IT3	0	$\frac{1+2\phi}{3}$ IT6	

Normalised Vertices

The vertices derived by triangulation have been normalised (all distances from the center of the dome equalised). These are the actual equation cells used in construction of the geodesic dome.

SP - Spherical Primary Vertices (normalised)

coordinate 1	COO	rdinate 2	coc	sphere radius	
0	$\frac{1}{\sqrt{\phi+2}}$	SP1 0.525731112	$\frac{\phi}{\sqrt{\phi+2}}$	SP2 0.850650808	1

SS - Spherical Secondary Vertices (normalised)

coordi	nate 1	coord	linate 2	coord	sphere radius	
0		$\frac{1}{3\sqrt{\phi + \frac{10}{9}}}$	SS1 0.20177410	$\frac{\phi}{\sqrt{\phi + \frac{10}{9}}}$	SS0 0.97943208	1
$\frac{2}{3\sqrt{\phi + \frac{10}{9}}}$	SS2 0.40354821	$\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}$	SS3 0.32647736	$\frac{1+2\phi}{3\sqrt{\phi+\frac{10}{9}}}$	SS6 0.85472882	
$\frac{1}{3\sqrt{\phi + \frac{10}{9}}}$	SS1 0.20177410	$\frac{2\phi}{3\sqrt{\phi + \frac{10}{9}}}$	SS4 0.65295472	$\frac{2+\phi}{3\sqrt{\phi+\frac{10}{9}}}$	SS5 0.730025574	

ST - Spherical Tertiary Vertices (normalised)

coordinate 1	coor	dinate 2	coor	sphere radius	
0	$\frac{\phi}{3\sqrt{\phi+\frac{2}{3}}}$	ST3 0.35682208	$\frac{1+2\phi}{3\sqrt{\phi+\frac{2}{3}}}$	ST6 0.93417235	1
$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$	$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$	ST7 0.577350269	$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$		

Supplement 3 - Vertex Tables

These tables are used in conjunction with the Equation Cells tables. All calculations are based on the golden ratio PHI (ϕ).

$$\phi = \frac{1 + \sqrt{5}}{2}$$

Note that PI (π) does not occur at all in this document, which is peculiar since we are approximating a sphere... so we give PI the boot...

The first set of \mathbf{x} , \mathbf{y} , and \mathbf{z} coordinates describe vertices on the Icosahedron surface. Having these coordinates will come in handy in situations where, say, animation is required to smoothly change the icosahedron into a geodesic sphere.

NF = Normalising Factor (Multiply \mathbf{x} , \mathbf{y} , and \mathbf{z} by this factor to get the coordinates for the sphere vertices). This factor is actually the radius of each coordinate to the center of the icosahedron. Dividing each coordinate with this radius 'normalises' these radii to unity (1).

All hard-coded values are in red.

The derived vertices can be programmed using 3 simple equations (see dome document).

The tertiary vertex coordinates can be found by finding the midpoint of any of 3 pairs of vertices. For example if the tertiary vertex is named ABC, then vertex ABC is the midpoint between AB2 and AC2.

	PRIMARY VERTICES - 12 in total											
index	vertex icosahedron surface				NF		alised s surface					
		Х	У	Z		X	у	Z				
0	Α	0	1	ф	IPR	0	SP1	SP2				
1	В	0	-1	ф		0	- SP1	SP2				
2	С	0		-ф		0	- SP1	- SP2				
3	D	0	1	-ф		0	SP1	- SP2				
4	Е	ф	0	1		SP2	0	SP1				
5	F	-ф	0	1		- SP2	0	SP1				
6	G	-ф	0	-1		- SP2	0	- SP1				
7	Н	ф	0	-1		SP2	0	- SP1				
8	I	1	ф	0		SP1	SP2	0				
9	J	-1	ф	0		- SP1	SP2	0				
10	K	-1	-ф	0		- SP1	- SP2	0				
11	L	1	-ф	0		SP1	- SP2	0				

index	vertex	ic	osahed surfac		NF	norm			
		Х	У	Z		Х	у	Z	
12	AB1	0	IS1	ф	ISR	0	SS1	SS0	
13	AE1	IS3	IS2	IS6		SS3	SS2	SS6	
14	AF1	-IS3	IS2	IS6	1	-SS3	SS2	SS6	
15	Al1	IS1	IS5	IS4		SS1	SS5	SS4	
16	AJ1	-IS1	IS5	IS4		-SS1	SS5	SS4	
17	BE1	IS3	-IS2	IS6		SS3	-SS2	SS6	
18	BF1	-IS3	-IS2	IS6		-SS3	-SS2	SS6	
19	BK1	-IS1	-IS5	IS4		-SS1	-SS5	SS4	
20	BL1	IS1	-IS5	IS4		SS1	SS5	SS4	
21	CD1	0	-IS1	-ф		0	-SS1	- SS0	
22	CG1	-IS3	-IS2	-IS6		-SS3	-SS2	-SS6	
23	CH1	IS3	-IS2	-IS6		SS3	-SS2	-SS6	
24	CK1	-IS1	-IS5	-IS4		-SS1	-SS5	-SS4	
25	CL1	IS1	-IS5	-IS4		SS1	-SS5	-SS4	
26	DG1	-IS3	IS2	-IS6		-SS3	SS2	-SS6	
27	DH1	IS3	IS2	-IS6		SS3	SS2	-SS6	
28	DI1	IS1	IS5	-IS4		SS1	SS5	-SS4	
29	DJ1	-IS1	IS5	-IS4		-SS1	SS5	-SS4	
30	EH1	ф	0	IS1		SS0	0	SS1	
31	EI1	IS6	IS3	IS2		SS6	SS3	SS2	
32	EL1	IS6	-IS3	IS2		SS6	-SS3	SS2	
33	FG1	-ф	0	IS1		- SS0	0	SS1	
34	FJ1	-Ψ -IS6	IS3	IS2	1	-SS6	SS3	SS2	
35	FK1	-IS6	-IS3	IS2		-SS6	-SS3	SS2	
36	GJ1	-IS6	IS3	-IS2		-SS6	SS3	-SS2	
37	GK1	-IS6	-IS3	-IS2		-SS6	-SS3	-SS2	
38	HI1	IS6	IS3	-IS2		SS6	SS3	-SS2	
39	HL1	IS6	-IS3	-IS2		SS6	-SS3	-SS2	
40	IJ1	IS1	ф	0		SS1	SS0	0	
41	KL1	-IS1	-ф	0		-SS1	- SS0	0	

					ES - two	•			vertex	
index	vertex	icosahedron surface			NF	normalised sphere surface				
		X	У	Z		X	У	Z		
42	AB2	0	-IS1	ф	ISR	0	-SS1	SS0		
43	AE2	IS4	IS1	IS5		SS4	SS1	SS5		
44	AF2	-IS4	IS1	IS5		-SS4	SS1	SS5		
45	Al2	IS2	IS6	IS3		SS2	SS6	SS3		
46	AJ2	-IS2	IS6	IS3		-SS2	SS6	SS3		
47	BE2	IS4	-IS1	IS5		SS4	-SS1	SS5		
48	BF2	-IS4	-IS1	IS5		-SS4	-SS1	SS5		
49	BK2	-IS2	-IS6	IS3	1	-SS2	-SS6	SS3		
50	BL2	IS2	-IS6	IS3	1	SS2	-SS6	SS3		
51	CD2	0	IS1	-ф		0	SS1	-SS0		
52	CG2	-IS4	-IS1	-IS5		-SS4	-SS1	-SS5		
53	CH2	IS4	-IS1	-IS5		SS4	-SS1	-SS5		
54	CK2	-IS2	-IS6	-IS3		-SS2	-SS6	-SS3		
55	CL2	IS2	-IS6	-IS3		SS2	-SS6	-SS3		
56	DG2	-IS4	IS1	-IS5		-SS4	SS1	-SS5		
57	DH2	IS4	IS1	-IS5		SS4	SS1	-SS5		
58	DI2	IS2	IS6	-IS3		SS2	SS6	-SS3		
59	DJ2	-IS2	IS6	-IS3		-SS2	SS6	-SS3		
60	EH2	ф	0	-IS1		SS0	0	-SS1		
61	El2	IS5	IS4	IS1		SS5	SS4	SS1		
62	EL2	IS5	-IS4	IS1		SS5	-SS4	SS1		
63	FG2	-ф	0	-IS1		-SS0	0	-SS1		
64	FJ2	-IS5	IS4	IS1	1	-SS5	SS4	SS1		
65	FK2	-IS5	-IS4	IS1	7	-SS5	-SS4	SS1		
					7					
66	GJ2	-IS5	IS4	-IS1]	-SS5	SS4	-SS1		
67	GK2	-IS5	-IS4	-IS1		-SS5	-SS4	-SS1		
68	HI2	IS5	IS4	-IS1	7	SS5	SS4	-SS1		
69	HL2	IS5	-IS4	-IS1	7	SS5	-SS4	-SS1		
70	IJ2	-IS1	φ	0	7	-SS1	SS0	0		
71	KL2	IS1	-φ	0	1	SS1	-SS0	0		

TE	RTIAF	RY VEF	RTICES	6 - not	borderin	ıg a pri	mary v	ertex -	20 in 1	total	
index	vertex	icosahedron surface		NF	norm	alised s		chosen vertices			
		X	У	Z		X	У	Z	13.000		
72	AIJ	0	IT6	IT3	ITR	0	ST6	ST3	Al2	AJ2	
73	AJF	-IT7	IT7	IT7		-ST7	ST7	ST7	AJ2	AF2	
74	AFB	-IT3	0	IT6		-ST3	0	ST6	AF2	AB2	
75	ABE	IT3	0	IT6		ST3	0	ST6	AB2	AE2	
76	AEI	IT7	IT7	IT7		ST7	ST7	ST7	AE2	Al2	
77	BFK	-IT7	-IT7	IT7		-ST7	-ST7	ST7	BF2	BK2	
78	BKL	0	-IT6	IT3		0	-ST6	ST3	BK2	BL2	
79	BLE	IT7	-IT7	IT7		ST7	-ST7	ST7	BL2	BE2	
80	CDH	IT3	0	-IT6		ST3	0	-ST6	CD2	CH2	
81	CHL	IT7	-IT7	-IT7		ST7	-ST7	-ST7	CH2	CL2	
82	CLK	0	-IT6	-IT3		0	-ST6	-ST3	CL2	CK2	
83	CKG	-IT7	-IT7	-IT7		-ST7	-ST7	-ST7	CK2	CG2	
84	CGD	-IT3	0	-IT6		-ST3	0	-ST6	CG2	CD2	
85	DGJ	-IT7	IT7	-IT7		-ST7	ST7	-ST7	DG2	DJ2	
86	DJI	0	IT6	-IT3		0	ST6	-ST3	DJ2	DI2	
87	DIH	IT7	IT7	-IT7		ST7	ST7	-ST7	DI2	DH2	
88	ELH	IT6	-IT3	0		ST6	-ST3	0	EL2	EH2	
89	EHI	IT6	IT3	0		ST6	ST3	0	EH2	El2	
90	FJG	-IT6	IT3	0		-ST6	ST3	0	FJ2	FG2	
91	FGK	-IT6	-IT3	0		-ST6	-ST3	0	FG2	FK2	

Supplement 4 - Classification and comparison of secondary and tertiary vertex coordinates

Cells of the same colour occur in the same set of coordinates (for a given vertex).

M	Icosahedron Secondary vertex - type 1/3				
	$0 + \frac{x}{3}(M - 0)$	$1 + \frac{x}{3}(M-1)$	$-1+\frac{x}{3}(M+1)$	$\phi + \frac{x}{3}(M - \phi)$	$-\phi + \frac{x}{3}(M+\phi)$
0	0	IS2	-IS2	IS4	
1	IS1		-IS1	IS6	
-1	-IS1	IS1			-IS6
ф	IS3	IS5		ф	
-ф	-IS3		-IS5		-ф

M	Icosahedron Secondary vertex - type 2/3				
	$0 + \frac{x}{3}(M - 0)$	$1 + \frac{x}{3}(M-1)$	$-1+\frac{x}{3}(M+1)$	$\phi + \frac{x}{3}(M - \phi)$	$-\phi + \frac{x}{3}(M + \phi)$
0	0	IS1	-IS1	IS3	
1	IS2		IS1	IS5	
-1	-IS2	-IS1			-IS5
ф	IS4	IS6		ф	
-ф	-IS4		-IS6		-ф

Icosahedron Tertiary vertex				
vertex 1	ertex 1 vertex 2			
		2		
IS1	IS6	IT7		
IS2	IS4			
IS3	IS5			
IS4	0	IT3		
IS3	IS3			
IS5	ф	IT6		
IS6	IS6			

Supplement 5 - Useful Equations

1. Equation to measure a distance between 2 vertices in 3D.

Used in method2: points_dist_3d

$$|AB| = \sqrt{(B_{[x]} - A_{[x]})^2 + (B_{[y]} - A_{[y]})^2 + (B_{[z]} - A_{[z]})^2}$$

2. General equation to locate a point at a ratio of v/w of the length between two vertices, starting from the first vertex.

Used in method3: point between two 3d

$$\frac{v}{w}A_{-}B_{[i]} = A_{[i]} + \frac{v}{w}(B_{[i]} - A_{[i]}) = \frac{(w - v)A_{[i]} + vB_{[i]}}{w}$$

3. Law of cosines

where α is the angle opposite side a in <u>any</u> triangle (not just right-angled)

$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$

4. Law of sines

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

where angles are opposite edges baring the same label in any triangle

4. Length of chord spanning an arc of given length

arc length and radius are known.

$$\theta = \frac{arc_length}{radius}$$

$$length_chord = \sqrt{2r^2(1-\cos\theta)}$$

5. Angle between two points in 2D, given the chord length

$$\theta = \cos^{-1} \left(1 - \frac{length_chord^2}{2r^2} \right)$$

6. Height of a BCC triangle,

Perpendicular does not end up in the midpoint of an edge (special case).

$$h = \sqrt{B^2 - \left(\frac{B^2}{2C}\right)^2}$$

7. Find center of any triangle

The center can be found by dividing the sum of the vertex coordinates by 3. Used in method1: *triangle_centroid_3d*

$$Centroid_{[i]} = \frac{vertex1_{[i]} + vertex2_{[i]} + vertex3}{3}$$

8. Calculate the angle in radians between 2 vectors starting at the origin.

Used in method: vector_separation_3d

$$angle v1_v2 = \cos^{-1} \frac{v1_{[x]} * v2_{[x]} + v1_{[y]} * v2_{[y]} + v1_{[z]} * v2_{[z]}}{length \ v1 * length \ v2}$$

9. Calculate the inner circle coordinates of a triangle

$$I_{[i]} = \frac{S_{AB} * C_{[i]} + S_{AC} * B_{[i]} + S_{BC} * A_{[i]}}{Perimeter}$$

where S_{AB} is the length of one side and $C_{[i]}$ the coordinates of the opposite vertex.

$$radius = \frac{1}{2} \sqrt{\frac{(-S_{ArBr} + S_{BrCr} + S_{ArCr}) * (S_{ArBr} - S_{BrCr} + S_{ArCr}) * (S_{ArBr} + S_{BrCr} - S_{ArCr})}{Perimeter}}$$

where the perimeter is the sum of the 3 sides of the triangle

10. The dot product of 2 vectors

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{y}_1 \mathbf{y}_2 + \mathbf{z}_1 \mathbf{z}_2$$

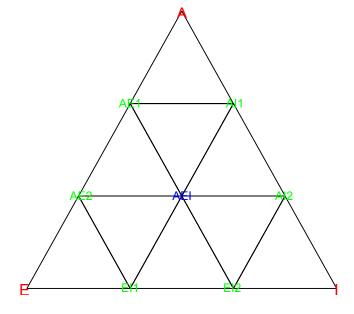
$$\mathbf{a.b} = |\mathbf{a}||\mathbf{b}|\cos\theta$$

11. Cross product of 2 vectors (using determinant system)

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a1 & a2 & a3 \\ b1 & b2 & b3 \end{bmatrix} = \mathbf{i} \begin{bmatrix} a2 & a3 \\ b2 & b3 \end{bmatrix} - \mathbf{j} \begin{bmatrix} a1 & a3 \\ b1 & b3 \end{bmatrix} + \mathbf{k} \begin{bmatrix} a1 & a2 \\ b1 & b2 \end{bmatrix}$$

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} a2b3 - a3b2 \\ a3b1 - a1b3 \\ a1b2 - a2b1 \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \end{bmatrix}$$

Supplement 6 - Calculations for AEI triangle



"Flat " Coordinates (on the surface of the icosahedron)

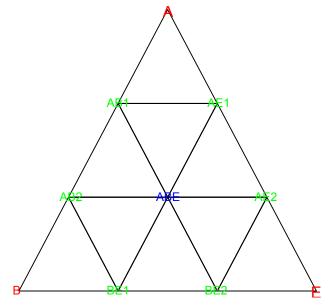
vertex	х	у	z	radius	approx. radius
Α	0	1	ф	$\sqrt{\phi+2}$	1.902113032
AE1	$\frac{\phi}{3}$	$\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	1.652012439
Al1	$\frac{1}{3}$	$\frac{2+\phi}{3}$	$\frac{2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
AE2	$\frac{2\phi}{3}$	$\frac{1}{3}$	$\frac{2+\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
AEI	$\frac{1+\phi}{3}$	$\frac{1+\phi}{3}$	$\frac{1+\phi}{3}$	$\sqrt{\phi + \frac{2}{3}}$	1.511522628
Al2	$\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\frac{\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
E	ф	0	1	$\sqrt{\phi+2}$	
EI1	$\frac{1+2\phi}{3}$	$\frac{\phi}{3}$	$\frac{2}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
El2	$\frac{2+\phi}{3}$	$\frac{2\phi}{3}$	$\frac{1}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
I	1	ф	0	$\sqrt{\phi+2}$	

Normalised coordinates

vertex	X	у	z
Α	0	1	ϕ
		$\sqrt{\phi+2}$	$\sqrt{\phi+2}$
	0	0.52573111	0.85065080
AE1	φ	2	$1+2\phi$
	$3\sqrt{\phi + \frac{10}{9}}$	$\frac{2}{3\sqrt{\phi + \frac{10}{9}}}$	$\frac{1+2\phi}{3\sqrt{\phi+\frac{10}{9}}}$
	0.32647736	0.40354821	0.85472882
Al1	1	$2+\phi$	
	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi+\frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$
	0.20177410	0.730025574	0.65295472
AE2	$\frac{2\phi}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{1}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{2+\phi}{3\sqrt{\phi+\frac{10}{9}}}$
	0.65295472	0.20177410	0.730025574
AEI	$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$	$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$	$\frac{1+\phi}{3\sqrt{\phi+\frac{2}{3}}}$
AIO	0.577350269	0.577350269	0.577350269
Al2	$\frac{2}{3\sqrt{\phi + \frac{10}{9}}}$	$\frac{1+2\phi}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}$
_	0.40354821	0.85472882	0.32647736
E	$\frac{\phi}{\sqrt{\phi+2}}$	0	$\frac{1}{\sqrt{\phi+2}}$
	0.85065080	0	0.52573111
EI1	$\frac{1+2\phi}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}$	$\frac{2}{3\sqrt{\phi+\frac{10}{9}}}$
	0.85472882	0.32647736	0.40354821
El2	$\frac{2+\phi}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{2\phi}{3\sqrt{\phi + \frac{10}{9}}}$	$\frac{1}{3\sqrt{\phi + \frac{10}{9}}}$
1	0.730025574	0.65295472	0.20177410
1	$\frac{1}{\sqrt{\phi+2}}$	$\frac{\phi}{\sqrt{\phi+2}}$	U
	0.52573111	0.85065080	0

Supplement 7 - Calculations for ABE triangle

ABE = (AB2+AE2)/2



"Flat " Coordinates

vertex	X	у	Z	radius	approx. radius
A	0	1	ф	$\sqrt{\phi+2}$	1.902113032
AB1	0	$\frac{1}{3}$	ф	$\sqrt{\phi + \frac{10}{9}}$	1.652012439
AE1	$\frac{\phi}{3}$	$\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
AB2	0	$-\frac{1}{3}$	ф	$\sqrt{\phi + \frac{10}{9}}$	
ABE	$\frac{\phi}{3}$	0	$\frac{1+2\phi}{3}$	$\sqrt{\phi + \frac{2}{3}}$	1.511522628
AE2	$\frac{2\phi}{3}$	$\frac{1}{3}$	$\frac{2+\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
В	0	-1	ф	$\sqrt{\phi+2}$	
BE1	$\frac{\phi}{3}$	$-\frac{2}{3}$	$\frac{1+2\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
BE2	$\frac{2\phi}{3}$	$-\frac{1}{3}$	$\frac{2+\phi}{3}$	$\sqrt{\phi + \frac{10}{9}}$	
E	ф	0	1	$\sqrt{\phi+2}$	

Normalised coordinates

vertex	X	у	Z
Α	0	1	φ
		$\sqrt{\phi+2}$	$\sqrt{\phi+2}$
	0	0.52573111	0.85065080
AB1	0	1	φ
		$3\sqrt{\phi + \frac{10}{9}}$	$\sqrt{\phi + \frac{10}{9}}$
	0	0.20177410	0.97943208
AE1	φ	2	$1+2\phi$
	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$	$3\sqrt{\phi + \frac{10}{9}}$
	0.32647736	0.40354821	0.85472882
AB2	0	$-\frac{1}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{\phi}{\sqrt{\phi + \frac{10}{9}}}$
	0	-0.20177410	0.97943208
ABE	$\frac{\phi}{3\sqrt{\phi+\frac{2}{3}}}$	0	$\frac{1+2\phi}{3\sqrt{\phi+\frac{2}{3}}}$
	0.35682208	0	0.93417235
AE2	$ \frac{2\phi}{3\sqrt{\phi + \frac{10}{9}}} $ 0.65295472	$\frac{1}{3\sqrt{\phi + \frac{10}{9}}}$ 0.20177410	$\frac{2+\phi}{3\sqrt{\phi+\frac{10}{9}}}$ 0.730025574
В	0	1	φ
		$-\frac{1}{\sqrt{\phi+2}}$	$\sqrt{\phi+2}$
	0	-0.52573111	0.85065080
BE1	$\frac{\phi}{3\sqrt{\phi + \frac{10}{9}}}$	$-\frac{2}{3\sqrt{\phi+\frac{10}{9}}}$	$\frac{1+2\phi}{3\sqrt{\phi+\frac{10}{9}}}$
	0.32647736	-0.40354821	0.85472882
BE2	$ \frac{2\phi}{3\sqrt{\phi + \frac{10}{9}}} $ 0.65295472	$-\frac{1}{3\sqrt{\phi + \frac{10}{9}}}$ -0.20177410	$\frac{2+\phi}{3\sqrt{\phi+\frac{10}{9}}}$ 0.730025574
E	φ	0	1
_	$\frac{\varphi}{\sqrt{\phi+2}}$		$\frac{1}{\sqrt{\phi+2}}$
	0.85065080	0	0.52573111

Supplement 8 - Calculate angles in 3D

General

The equation for determining an angle in 3D assuming you know the vertex coordinates for the 2 vectors A and B is derived from

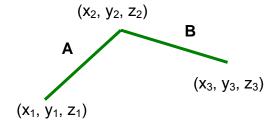
$$A.B = |A||B| * \cos \alpha$$

... where A.B is the dot product between the 2 vectors A and B, and α the angle between them.

From this we can derive the equation for the angle α :

$$\alpha = \arccos\left(\frac{A.B}{|A||B|}\right)$$

Procedure



Knowing 3 points defining an angle, calculate the vectors

$$A = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix} \qquad B = \begin{bmatrix} x_2 - x_3 \\ y_2 - y_3 \\ z_2 - z_3 \end{bmatrix}$$

Note that the point (x_2,y_2,z_2) is the midpoint of the angle and that both subtractions start from this midpoint.

Calculate the dot product between 2 vectors in 3D with ...

$$A.B = (x_2 - x_1)(x_2 - x_3) + (y_2 - y_1)(y_2 - y_3) + (z_2 - z_1)(z_2 - z_3)$$

Calculate the length of the vectors

$$|A| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$|B| = \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2 + (z_2 - z_3)^2}$$

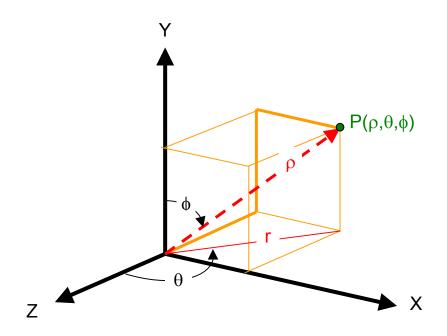
Finally, use the equation to calculate the angle.

$$\alpha = \arccos\left(\frac{A.B}{|A||B|}\right)$$

Supplement 9 - Spherical Coordinates

Standard representation of a point using spherical coordinates

Following diagram illustrates that a point in 3D space can be described by 2 angles. Note that some textbooks may interchange X, Y, and Z, but this does not alter the logic. The X, Y, Z configuration used here is the standard used in the OpenGL Graphics library and therefore relates to our discussion on dome construction.



In the Y-r plane

$$y = \rho \cos \phi$$
 (1)

$$r = \rho \sin \phi$$
 (2)

In the Z-X plane

$$z = r \cos\theta$$
 (3)

$$x = r \sin\theta$$
 (4)

Spherical to rectangular

$$z = \rho \sin\phi \cos\theta$$
 (2, 3)
 $x = \rho \sin\phi \sin\theta$ (2, 4)

$$y = \rho \cos \phi$$
 (1)

Rectangular to Spherical

$$\phi = \cos^{-1}(y/\rho)$$

$$\theta = \tan^{-1}(x/z)$$

The spherical (3D polar) representation is especially useful in problems where there is symmetry about a point, and the origin is placed at this point.

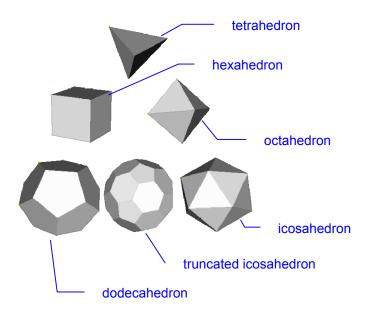
Supplement 10 - Illustrations

Platonic Solids

Illustrations from http://www.frontiernet.net/~imaging/polyh.html

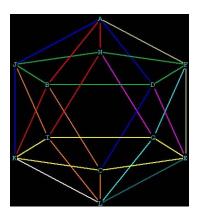
The 5 Platonic solids and the "truncated icosahedron" (soccer ball). The truncation involves cutting the vertices (corners) of the icosahedron, revealing pentagons and hexagons.

The truncated icosahedron can also be used to construct our type of geodesic dome.

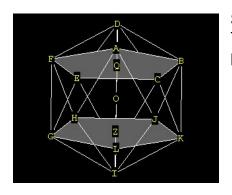


The Icosahedron

Illustrations from http://kjmaclean.com/Geometry/Icosahedron.html



Showing the various pentagons present in the crosssections of the icosahedron.



Showing the Golden proportions in the icosahedron. The equations beneath this figure reveal how the proportions of the icosahedron are based on PHI.

Diameters =
$$DI = FR = BG = ... = \sqrt{\phi^2 + 1} * side$$

$$\frac{QZ}{DQ} = \frac{FQ}{DQ} = \phi$$

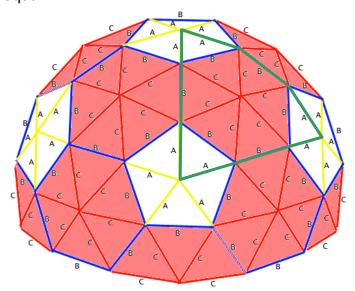
$$r = OD = \frac{\sqrt{\phi^2 + 1}}{2}$$

$$OQ = \frac{\phi}{2\sqrt{\phi^2 + 1}} * side$$

$$\frac{OQ}{DO} = \frac{\phi}{2} * side$$

The actual Geodesic Dome, frequency 3, size 5/8

The green triangle is one of the original icosahedron's triangles. Note that each side has been divided by 3 (hence frequency = 3) and how all the vertices have been pushed out so that the radii from the origin (center of the icosahedron) to each of these vertices are equal.

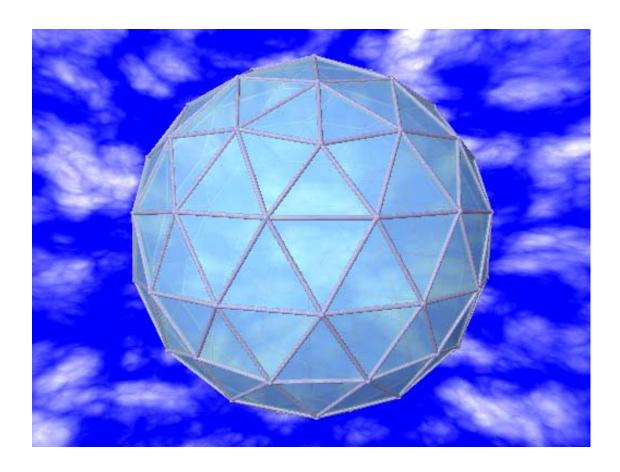


Page 70 of 76

Full Geodesic Dome - frequency 3 - 'rod' or 'stick' view

Image below was created using a freely available program "windome.exe".

Refer to http://www.applied-synergetics.com/ashp/html/windome_readme.html



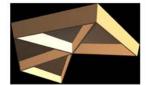
Animation Images

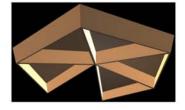
Dirk Bertels Hobart 2005

Dome construction using Triangular Pyramid segments (1)

Scene 1

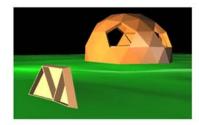
5 Rotations of 1 Triangular Pyramid segment produces a Hexagonal Pyramid segment.





Scene 2

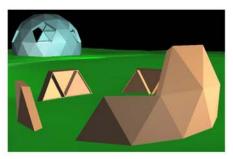
First the foundation is constructed using half Hexagonal Pyramid segments. Following that, the dome is completed using full Hexagonal Pyramid segments.

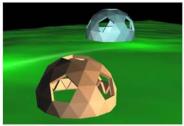


Animation Images

Dirk Bertels Hobart 2005

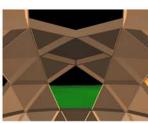
Dome construction using Triangular Pyramid segments (2)





Scene 3

The camera enters the dome and explores the interior



Scene 4

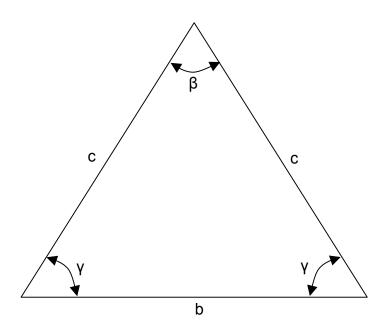
The camera turns upwards, looking through the top of the dome and targetting a Triangular Pyramid segment, the basic building block of the dome.

Print-out

This version also displays data relevant to the user's input, at the command line



BCC triangle face dimensions



$$b = 0.4035482$$

$$c = 0.4124115$$

$$b^2 = c^2 + c^2 - 2cc\cos\beta$$

$$\beta = \arccos\left(\frac{2c^2 - b^2}{2c^2}\right)$$

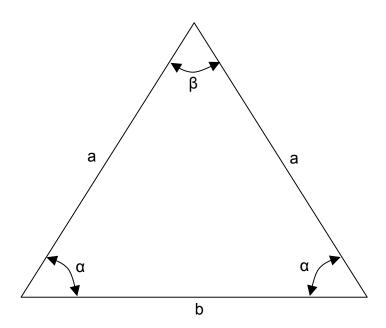
$$\beta = 58.5831614^{\circ}$$

$$c^2 = c^2 + b^2 - 2bc\cos\chi$$

$$\chi = \arccos\left(\frac{b}{2c}\right)$$

$$\chi = 60.70842^{\circ}$$

BAA triangle face dimensions



$$a = 0.3486155$$

$$b = 0.4035482$$

$$b^2 = a^2 + a^2 - 2aa\cos\beta$$

$$\beta = \arccos\left(\frac{2a^2 - b^2}{2a^2}\right)$$

$$\beta = 70.730536^{\circ}$$

$$a^2 = a^2 + b^2 - 2ba\cos\alpha$$

$$\alpha = \arccos\left(\frac{b}{2a}\right)$$

$$\alpha = 54.6347321^{\circ}$$

General Notes

Number of hexagons, pentagons, triangles needed per dome

Sphere

20 hexagons 12 pentagons

120 hexagon triangles (BCC) 60 pentagon triangles (BAA)

5/8 dome

5 half hexagons10 whole hexagons6 whole pentagons

75 hexagon triangles (BCC) 30 pentagon triangles (BAA)